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Unauthorized transfer of sensitive information from a victim 
enterprise to an attacker
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Examples..

http://www.privacyrights.org/data-breach
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Cyber Espionage in 2015

2015 Data Breach Investigations Report, Verizon.

548 incidents reported in 2015.
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Data Loss Prevention (DLP) Products (2006~)

Image: http://blog.skodaminotti.com/blog/data-loss-prevention-part-2-choosing-a-dlp-solution/
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Sensitive data identification

– Regular expression 
– social security numbers, telephone numbers, addresses, and other data that has a significant amount of structure.

– Keywords
– small number of known keywords can identify private data, e.g., medical or financial records

– Fingerprints
– Hashes of substrings of unstructured data
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Limitations

– Good at identifying “universally” confidential data, e.g., credit card number and SSN

– Organization specific key word and fingerprint generation was challenging

– Prevents accidents and commodity attacks

– Easy to circumvent
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Can we learn organization specific sensitive data?
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Text classification for DLP

Text Classification for Data Loss Prevention, Michael Hart, Pratyusa Manadhata, and Rob Johnson 
Privacy Enhancing Technology Symposium (PETS) 2011

PRIVATE

PUBLIC

FEATURES CLASSIFIER
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Real world is messy

– Enterprise Private (EPR), Enterprise Public (EPL), and Non Enterprise (NE)

– EPR and EPL likely to be relatively similar

– Many NE share almost no features with EPR and EPL

– Some NE may be quite similar to EPL

Contradicting goals: catch subtle differences between EPL and EPR, 

but not overfit to be able identify NE as non-sensitive
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Our approach [PETS 2011]

– Supplement training data with NE

– Adjust SVM boundary toward EPL 

– Two-step classifier to reduce FPs

Dataset Baseline FDR Our classifier FDR
DynCorp 4.49% 0.00%
Enron 47.05% 0.92%
Google 8.99% 1.06%
Mormon 0.88% 0.36%
TM 22.06% 0.01%

Table 3. The False Discovery Rate of the baseline approach far exceeds our classifier,
implying that the baseline approach would fare poorly in real world networks whereas ours would not raise 
much fewer alarms.
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“Vector Machine Learning”

http://eval.symantec.com/mktginfo/enterprise/white_papers/b-dlp_machine_learning.WP_en-us.pdf
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The threat landscape has evolved.
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Advanced threats: The new landscape

Infiltration

Remote 
Control

DNS 
HTTP

HTTPS
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Example: DNS Exfiltration

Malware DNS server

msg1.attacker.com?

msg2.attacker.com?

msg3.attacker.com?

msg4.attacker.com?

msg5.attacker.com?

Authoritative 
Server for 

attacker.com

msg1.attacker.com?

msg2.attacker.com?

msg3.attacker.com?

msg4.attacker.com?

msg5.attacker.com?
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A real world example
–Queries
BLGCOFDAGOOOESDULBOOBOOOOOOOOOOOOOOOOOOLDOSESKGKHHF.detacsufbo.ru

EUJSFLDAGOOOESDUDBOOBOOOOOOOOOOOOOOOOOOOSSJHGHFCLFOHCHLGHSAHAHU.CHLAAFHLSGHAFGFUOOEUGDKLCSHEKLJBOCOSECHFFUGBS
KGDJGGGHOJHJCGJG.KCDOELDUOEGUCUOUHJUAKEGGGFGEKHLGFDFESJOEL.detacsufbo.ru

SHUDHFDAGOOOESDUGBOOBOOOOOOOOOOOOOOOOOOEDKDFBBHLEGGJLGUFABHCCU.DHDFFCHHKSHGHAOUBGEGEJLGFHUBDFGUGJDFFEAKFSBFFG
SDACGHCSKBHLSCGHH.EHSHHJFHUAAOOGKKSDDAHAUBBJDCCKGSHKLGJGAS.detacsufbo.ru

OHDOBHDAGOOESDUGBOOHOOOAOOOOOOOOOOOOOOO.detacsufbo.ru

HBSGGCDAGOOESDUUSOOBOOOOOOOOOOOOOOOOOOO.detacsufbo.ru

–Responses (TXT records)
LLCDGHDABOOOSSUHOOOFOOOOOOOOOOOOOOOOOOO

KJGDUDABOOOSBSUHOOOFOOOOOOOOOOOOOOOOOOO

JJDHUDABOOOSBSUHOOOFOOOOOOOOOOOOOOOOOOO

HBEAGDABOOOSBSUHOOOUOOOOOOOOOOOOOOOOOOO

KALFCSDAOOOSBSUHOOOFOOOOOOOOOOOOOOOOOOO
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How do we deal with the new threat landscape?
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Detection mechanisms ??

– Many queries from a client to a domain -> misconfigured devices

– Many distinct queries from a client to a domain -> signaling needs few subdomains

– Many long queries from a client to a domain -> credit card numbers are not long
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Detection mechanism: Information content

Vern Paxson, Mihai Christodorescu, Mobin Javed, Josyula Rao, Reiner Sailer, Douglas Schales, Marc Ph. Stoecklin, 
Kurt Thomas, Wietse Venema, and Nicholas Weaver. 
Practical comprehensive bounds on surreptitious communication over DNS. 
In Proceedings of the 22nd USENIX conference on Security (SEC'13). USENIX Association, Berkeley, CA, USA, 17-32.
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Industry heuristics for DNS exfiltration detection

– Lengths of DNS queries and responses

– Sizes of request and reply packets

– Entropy

– Total number/volume of DNS queries from a device

– Total number/volume of DNS queries to a domain

– …
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Characteristics of heuristics driven solutions

– Complex to build/maintain, but very fragile
– False negatives and false positives

– Independent of other security products in the network

– Need a human being in the loop for response/remediation
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Can we build a reliable detector on top of ‘noisy’ 
detectors?
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Problem setting

– Defender 
– observes a stream of noisy alerts (or absence of alerts)
– has partial knowledge of the network

– Must identify domains involved in exfiltration and decide whether to block traffic (plan of action)

– While weighting the cost of
– Deploying noisy detectors
– Data loss due to false negatives
– Disruption due to false positives
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Virtually Distributed Partially Observable Markov Decision 
Processes (VD-POMDP) [GameSec 16]

Network of enterprise devices, web domains, 
and noisy detector nodes

Original POMDP: Impractical to solve for 3-4 nodes

VD-POMDP:
1. Abstract action and observation space
2. Factor the original POMDP into one sub-POMDP per domain, solve them “offline”
3. Online policy aggregation using MILP to get final joint action

Sara Mc Carthy, Arunesh Sinha, Milind Tambe and Pratyusa K. Manadhata, Data Exfiltration Detection and Prevention: Virtually Distributed POMDPs for Practically Safer Networks, 7th Conference 
on Decision and Game Theory for Security (GameSec), New York, NY, Nov 2016.
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Experimental setting

– DETER testbed at USC

– Iodine to simulate DNS exfiltration

– Normal DNS query behavior simulation via scripts

– Paxson et al.’s approach as the noisy detector

– Synthetic workload for parameter sensitivity testing
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Results

– Runtime
– POMDP doesn’t scale beyond 3 domains, whereas VD-POMDP scales linearly
– For small networks (~1000 nodes), offline phase takes hours and online phase takes seconds

– Performance
– VD-POMDP’s accuracy and time to detection is similar to POMDP

– Robustness
– Very high detection rate (>0.95%) even with extremely noise detectors
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Summary

– Data exfiltration detection and prevention is an ongoing arms race

– Existing approaches don’t work in the new threat landscape

– Point detection approaches will always be noisy

– We need to build robust detectors on top of noisy detectors

– POMDP/Game theory may help us build robust detectors 
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Thank you

Pratyusa K. Manadhata
manadhata@hpe.com
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