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Emerging NVMs

 Emerging NVMs are promising replacements for DRAM.
 Fast (comparable to DRAM).
 Dense.
 Non-Volatile: persistent memory, no refresh power.

 Examples:
 Phase-Change Memory (PCM).
 Memristor.
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Source: http://www.techweekeurope.co.uk/



Emerging NVMs

 NVMs have their drawbacks:
 Limited endurance (e.g., PCM has ~108 writes per cell).
 Slow writes (e.g., PCM has ~150ns write latency).
 Data Remanence attacks are easier! 

 Requirements for using NVMs:
 Encrypt Data.
 Reduce number of writes, e.g., DCW and Flip-N-Write.
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Encryption reduces 
efficiency of DCW and 

Flip-N-Write



Data Shredding
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Data Shredding: The operation of zeroing out memory to   
avoid data leak.

 It prevents data leak between processes or virtual machines.
 Expensive:
 Up to 40% of page fault time could be spent in zeroing pages.
 For tested graph analytics apps, about 41.9% of memory writes 

could result from shredding.



VM

Example of Data Shredding
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How to implement shredding?
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Technique No cache   
pollution

Low-
processor

time

No Bus Traffic No Memory
Writes

Persistent

Regular stores ✗ ✗ ✗ (indirectly) ✗ (indirectly) ✗

Non-Temporal Stores ✔ ✗ ✗ ✗ ✔

DMA-Support Non-
Temporal Bulk Zeroing 
[Jiang, PACT09]

✔ ✔ ✗ ✗ ✔

RowClone (DRAM 
specific) [Shehadri, 
MICRO 2013]

✔ ✔ ✔ ✗ ✔

Can we shred 
without writing?



Threat Model

 Physical access to the memory.

 Snoop memory bus.
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Encryption/Decryption Process

 Encryption/Decryption: CTR-mode.

 The IV must change every time you encrypt new data.
 Key insight: IV used for encryption = IV used for decryption.
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Initialization Vector (IV)

Last-level Cache 
(LLC)

Encryption Key

XOR

1- Cache line miss

2- Retrieve unique IV

3- Generate One-Time Pad (OTP)

Secure Area

3- Submit read request

4- Receive from NVM5- Return decrypted



Initialization Vectors

 We use Split-Counter Scheme [C. Yan,  ISCA 2006] :
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Cache line 0
512-bits

4KB Page (64 Cache lines) Cache line 1
512-bits

Cache line  63
512-bits

…

Major (per page)

…

64-bit 7-bit 7-bit … 7-bit

Major Minor Cache line address
IV

Padding



Typical Shredding
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Cache

Write encrypted
Zero Page X

NVM
Encryption/
Decryption
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Page X



Our Proposal: Silent Shredder

 Key idea: instead of zeroing shredded page, make it unintelligible
 By changing the key or IV prior to decryption

 Design options:
 Have a key for every process

- Impractical: the memory controller needs to know process ID.

- Shared data requires same key.

 Increment all minor counters of a page
- Increases re-encryption frequency: minor counters will overflow faster.

 Increment the major counter
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Software Compatibility

 To achieve software compatibility, would like to have zero cache lines 
for new/shredded pages.

 Shredding: Increment major counter and zero all minor counters.

 Zero-filled cache lines are returned for zeroed minor counters.

 When minor counter overflows, it starts from 1.
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Design
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Proc

Memory
Controller

+1

P

Cache and 
Coherence 
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Counter
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Ctr

Minor counters
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Design
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Counter
Cache

Tag
Major

Ctr Minor counters

=0?
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Dk

MUX
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00..02. Read the minor
counter of the block x 3b. Yes

3a. No: fetch x

4. Return the fetched block
Or a zero-filled block

1. Miss x



Evaluation Methodology

 To evaluate our design, we use Gem5 to run a modified kernel.
 Added shred command to execute inside kernel’s clear_page function.

 Baseline uses non-temporal stores bulk zeroing.

 We use multi-programmed workloads from SPEC 2006 and 
PowerGraph suites.

 Warm up 1B then run 500M instructions on each core (~4B 
overall) from initialization and graph construction phases.

 We assume battery-backed Counter Cache.
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Configurations
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Processor

CPU 8-Cores, X86-64, 2GHz clock

L1 Cache 2 cycles, 64KB size, 8-way, LRU, 64B block size

L2 Cache 8 cycles, 512KB size, 8-way, LRU, 64B block size

L3 Cache Shared, 25 cycles, 8MB size, 8-way, LRU, 64B block size

L4 Cache Shared 35 cycles, 64MB size, 8-way, LRU, 64B block size

Main Memory 
(NVM)

Capacity 16GB

# Channels 2 channels

Channel bandwidth 12.8 GB/s

Read/Write latency 75ns/150ns

IV Cache 10 cycles, 4MB capacity, 8-way associativity, 64B blocks

Operating 
System

OS Gentoo

Kernel 3.4.91



Characterization
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Results
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50.3% read traffic reduction
46.5% (Very high shredding)

48.6% write reduction
44.6% (very high shredding)



Results
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6.4% IPC Improvement
19.3% (very high shredding)

3.3x reads speed up
2.8x (very high shredding)



Other Use Cases

 Bulk zeroing: Silent Shredder can be used for initializing large areas.
 Large-Scale Data Isolation: Fast data shredding for isolation across 

VMs or isolated nodes.
 Fast and efficient virtual disk provisioning when using byte-

addressable NVM devices.
 Garbage collectors in managed programming languages.
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Summary

 We eliminate writes due to data shredding.

 Our scheme is based on manipulating IV values.

 Silent Shredder leads to write reduction and 
performance improvement.

 Applicable to other cases.

23



Thanks!
Questions
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Encryption Assumption

 Encryption: CTR-mode.

 Same IV should never be reused
for encryption.

 OTP generation doesn’t need
the data.
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Initialization Vector (IV)

Encryption Global Key

XOR
CiphertextPlaintext

One Time Pad (OTP)



Security Concerns

 Any IV-based encryption scheme needs to guarantee the 
following:
 Counter Cache Persistency

 Counters must be kept persistent either by battery-backed, using 
write-through cache or using NVM-based counter cache.

 IVs’ and Data Integrity
 IVs and Data must be protected from tampering/replaying.
 Authenticated encryption, e.g., Bonsai Merkle Tree, can be used.
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Backup slides
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Costs of Data Shredding
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 Increasing overall number of main memory writes.
 Our experiments showed that up to 42% of main memory writes 

can result from shredding.
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