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Emerging NVMs

+ Emerging NVMs are promising replacements for DRAM.
+ Fast (comparable to DRAM).
+ Dense.
+ Non-Volatile: persistent memory, no refresh power.

+ Examples:
+ Phase-Change Memory (PCM).
+ Memristor. o—————rrr




Emerging NVMs

+ NVMs have their drawbacks:
+ Limited endurance (e.g., PCM has ~108 writes per cell).
+ Slow writes (e.g., PCM has ~150ns write latency).
+ Data Remanence attacks are easier!

Encryption reduces
efficiency of DCW and
Flip-N-Write

+ Requirements for.using NVMs:
+ Encrypt Data. 4}3
+ Reduce number of writes, e.g., DC\W




Data Shredding

avoid data leak.

[Data Shredding: The operation of zeroing out memory to ]

It prevents data leak between processes or virtual machines.

Expensive:

¢ Up to 40% of page fault time could be spent in zeroing pages.

¢ For tested graph analytics apps, about 41.9% of memory writes
could result from shredding.
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Example of Data Shredding

VM 4- Zero out

3- Request allocation

—3F

1- Request allocation \ 2- Zero out

Hypervisor




Technique

No cache
pollution

Low- No Bus Traffic
processor
time

No Memory
Writes

Persistent

Regular stores

Non-Temporal Stores

DMA-Support Non-
Temporal Bulk Zeroing
[Jiang, PACTO09]

X (indirectly)

Can we shred
without writing?

X

X

RowClone (DRAM
specific) [Shehadri,
MICRO 2013]




Threat Model

NVM

+ Physical access to the memory.

+ Snoop memory bus. Memory Bus




Encryption/Decryption Process

+ Encryption/Decryption: CTR-mode.

3- Submit read request
-\5- Return decrypted 4- Receive from NVM

3- Generate One-Time Pad (OTP)
1- Cache line miss
Key
2- Retrieve unique IV

Secure Area

+ The IV must change every time you encrypt new data.
+ Key insight: IV used for encryption = IV used for decryption.
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Initialization Vectors

+ We use Split-Counter Scheme [C. Yan, ISCA 2006] :

: Cacheline O Cachelinel | ... | Cacheline 63
4KB Page (64 Cache Ilnes) 512-bits 512-bits 512-bits

64-bit | 7-bit 7-bit 7-bit

Major (per page)
Major  Minor Cache line address Padding
1V | | | N




Typical Shredding

Non-temporal Bulk Shredding

Write encrypted

Zero Page X :
Encryption/
Decryption

Read & update counters




Our Proposal: Silent Shredder

+ Key idea: instead of zeroing shredded page, make it unintelligible
+ By changing the key or IV prior to decryption

<+ Design options:
+ Have a key for every process

Impractical: the memory controller needs to know process ID.

Shared data requires same key.

+ Increment all minor counters of a page

Increases re-encryption frequency: minor counters will overflow faster.

+ Increment the major counter




Software Compatibility

To achieve software compatibility, would like to have zero cache lines
for new/shredded pages.

Shredding: Increment major counter and zero all minor counters.
Zero-filled cache lines are returned for zeroed minor counters.

When minor counter overflows, it starts from 1.




1.Shred p

‘/5. Done

Memory 2. Invalidate p Cache and
Controller €— —> Coherence
Controller

3. Increment M
reset mi... mé4

' 4. Acknowledge

>

) <
Tag Major Minor counters
Ctr




1. Miss x

inor counters > 4. Return the fetched block
Or a zero-filled block

Counter
Cache

2. Read the minor
counter of the block x 3b.Yes

3a. No: fetch x




Evaluation Methodology

To evaluate our design, we use Gem>5 to run a modified kernel.
+ Added shred command to execute inside kernel’s clear_page function.

Baseline uses non-temporal stores bulk zeroing.

We use multi-programmed workloads from SPEC 2006 and
PowerGraph suites.

Warm up 1B then run 500M instructions on each core (~4B
overall) from initialization and graph construction phases.

We assume battery-backed Counter Cache.
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Configurations

Processor

CPU

8-Cores, X86-64, 2GHz clock

L1 Cache

2 cycles, 64KB size, 8-way, LRU, 64B block size

L2 Cache

8 cycles, 512KB size, 8-way, LRU, 64B block size

L3 Cache

Shared, 25 cycles, 8MB size, 8-way, LRU, 64B block size

L4 Cache

Shared 35 cycles, 64MB size, 8-way, LRU, 64B block size

Main Memory
(NVM)

Capacity

16GB

# Channels

2 channels

Channel bandwidth

12.8 GB/s

Read/Write latency

75ns/150ns

IV Cache

10 cycles, 4MB capacity, 8-way associativity, 64B blocks

Operating
System

oS

Gentoo

Kernel

3.4.91




Benchmark
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44.6% (very high shredding)

48.6% write reduction
46.5% (Very high shredding)

50.3% read traffic reduction
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3.3x reads speed up
2.8x (very high shredding)
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Relative IPC when using Silent Shredder

6.4% IPC Improvement
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Other Use Cases

+ Bulk zeroing: Silent Shredder can be used for initializing large areas.

+ Large-Scale Data Isolation: Fast data shredding for isolation across
VMs or isolated nodes.

+ Fast and efficient virtual disk provisioning when using byte-
addressable NVM devices.

+ Garbage collectors in managed programming languages.




Summary

+ We eliminate writes due to data shredding.
+ Our scheme is based on manipulating IV values.

+ Silent Shredder leads to write reduction and
performance improvement.

+ Applicable to other cases.




Thanks!

Questions




Encryption Assumption

Encryption: CTR-mode. Plaintext Ciphertext

Same |V should never be reused One Time Pad (OTP)
for encryption.

: : @ Global Key
OTP generation doesn’'t need

the data.




Security Concerns

+ Any IV-based encryption scheme needs to guarantee the
following:
+ Counter Cache Persistency

+ Counters must be kept persistent either by battery-backed, using
write-through cache or using NVM-based counter cache.

+ IVs' and Data Integrity
+ IVs and Data must be protected from tampering/replaying.
+ Authenticated encryption, e.g., Bonsai Merkle Tree, can be used.




Backup slides




Costs of Data Shredding

+ Increasing overall number of main memory writes.

+ Our experiments showed that up to 42% of main memory writes
can result from shredding.

Relative number of writes

The Impact of Kernel Shredding on Main Memory Writes
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