
Silent Shredder: Zero-Cost Shredding For
Secure Non-Volatile Main Memory Controllers

Amro Awad (NC State University)
Pratyusa Manadhata (Hewlett Packard Labs)

Yan Solihin (NC State University)
Stuart Haber (Hewlett Packard Labs)

William Horne (Hewlett Packard Labs)

1 ASPLOS 2016 2-6th April

Outline

 Background

 Related Work

 Goal

 Design

 Evaluation

 Summary

2

Outline

 Background

 Related Work

 Goal

 Design

 Evaluation

 Summary

3

Emerging NVMs

 Emerging NVMs are promising replacements for DRAM.
 Fast (comparable to DRAM).
 Dense.
 Non-Volatile: persistent memory, no refresh power.

 Examples:
 Phase-Change Memory (PCM).
 Memristor.

4

Source: http://www.techweekeurope.co.uk/

Emerging NVMs

 NVMs have their drawbacks:
 Limited endurance (e.g., PCM has ~108 writes per cell).
 Slow writes (e.g., PCM has ~150ns write latency).
 Data Remanence attacks are easier!

 Requirements for using NVMs:
 Encrypt Data.
 Reduce number of writes, e.g., DCW and Flip-N-Write.

5

Encryption reduces
efficiency of DCW and

Flip-N-Write

Data Shredding

6

Data Shredding: The operation of zeroing out memory to
avoid data leak.

 It prevents data leak between processes or virtual machines.
 Expensive:
 Up to 40% of page fault time could be spent in zeroing pages.
 For tested graph analytics apps, about 41.9% of memory writes

could result from shredding.

VM

Example of Data Shredding

7

NVM

Hypervisor

1- Request allocation 2- Zero out

Process

Process
OS

3- Request allocation

4- Zero outVM

How to implement shredding?

8

Technique No cache
pollution

Low-
processor

time

No Bus Traffic No Memory
Writes

Persistent

Regular stores ✗ ✗ ✗ (indirectly) ✗ (indirectly) ✗

Non-Temporal Stores ✔ ✗ ✗ ✗ ✔

DMA-Support Non-
Temporal Bulk Zeroing
[Jiang, PACT09]

✔ ✔ ✗ ✗ ✔

RowClone (DRAM
specific) [Shehadri,
MICRO 2013]

✔ ✔ ✔ ✗ ✔

Can we shred
without writing?

Threat Model

 Physical access to the memory.

 Snoop memory bus.

9

Encryption/Decryption Process

 Encryption/Decryption: CTR-mode.

 The IV must change every time you encrypt new data.
 Key insight: IV used for encryption = IV used for decryption.

10

Initialization Vector (IV)

Last-level Cache
(LLC)

Encryption Key

XOR

1- Cache line miss

2- Retrieve unique IV

3- Generate One-Time Pad (OTP)

Secure Area

3- Submit read request

4- Receive from NVM5- Return decrypted

Initialization Vectors

 We use Split-Counter Scheme [C. Yan, ISCA 2006] :

11

Cache line 0
512-bits

4KB Page (64 Cache lines) Cache line 1
512-bits

Cache line 63
512-bits

…

Major (per page)

…

64-bit 7-bit 7-bit … 7-bit

Major Minor Cache line address
IV

Padding

Typical Shredding

12

Counter
Cache

Write encrypted
Zero Page X

NVM
Encryption/
Decryption

Read & update counters

Non-temporal Bulk Shredding

Page X

Our Proposal: Silent Shredder

 Key idea: instead of zeroing shredded page, make it unintelligible
 By changing the key or IV prior to decryption

 Design options:
 Have a key for every process

- Impractical: the memory controller needs to know process ID.

- Shared data requires same key.

 Increment all minor counters of a page
- Increases re-encryption frequency: minor counters will overflow faster.

 Increment the major counter

13

Software Compatibility

 To achieve software compatibility, would like to have zero cache lines
for new/shredded pages.

 Shredding: Increment major counter and zero all minor counters.

 Zero-filled cache lines are returned for zeroed minor counters.

 When minor counter overflows, it starts from 1.

14

Design

15

Proc

Memory
Controller

+1

P

Cache and
Coherence
Controller

Counter
Cache

Tag Major
Ctr

Minor counters

00 0000

1. Shred p

3. Increment M
reset m1 … m64

5. Done
2. Invalidate p

4. Acknowledge

Design

16

Counter
Cache

Tag
Major

Ctr Minor counters

=0?

NVMM

MC

Dk

MUX

LLC

00..02. Read the minor
counter of the block x 3b. Yes

3a. No: fetch x

4. Return the fetched block
Or a zero-filled block

1. Miss x

Evaluation Methodology

 To evaluate our design, we use Gem5 to run a modified kernel.
 Added shred command to execute inside kernel’s clear_page function.

 Baseline uses non-temporal stores bulk zeroing.

 We use multi-programmed workloads from SPEC 2006 and
PowerGraph suites.

 Warm up 1B then run 500M instructions on each core (~4B
overall) from initialization and graph construction phases.

 We assume battery-backed Counter Cache.

17

Configurations

18

Processor

CPU 8-Cores, X86-64, 2GHz clock

L1 Cache 2 cycles, 64KB size, 8-way, LRU, 64B block size

L2 Cache 8 cycles, 512KB size, 8-way, LRU, 64B block size

L3 Cache Shared, 25 cycles, 8MB size, 8-way, LRU, 64B block size

L4 Cache Shared 35 cycles, 64MB size, 8-way, LRU, 64B block size

Main Memory
(NVM)

Capacity 16GB

Channels 2 channels

Channel bandwidth 12.8 GB/s

Read/Write latency 75ns/150ns

IV Cache 10 cycles, 4MB capacity, 8-way associativity, 64B blocks

Operating
System

OS Gentoo

Kernel 3.4.91

Characterization

19

Results

20

50.3% read traffic reduction
46.5% (Very high shredding)

48.6% write reduction
44.6% (very high shredding)

Results

21

6.4% IPC Improvement
19.3% (very high shredding)

3.3x reads speed up
2.8x (very high shredding)

Other Use Cases

 Bulk zeroing: Silent Shredder can be used for initializing large areas.
 Large-Scale Data Isolation: Fast data shredding for isolation across

VMs or isolated nodes.
 Fast and efficient virtual disk provisioning when using byte-

addressable NVM devices.
 Garbage collectors in managed programming languages.

22

Summary

 We eliminate writes due to data shredding.

 Our scheme is based on manipulating IV values.

 Silent Shredder leads to write reduction and
performance improvement.

 Applicable to other cases.

23

Thanks!
Questions

24

Encryption Assumption

 Encryption: CTR-mode.

 Same IV should never be reused
for encryption.

 OTP generation doesn’t need
the data.

25

Initialization Vector (IV)

Encryption Global Key

XOR
CiphertextPlaintext

One Time Pad (OTP)

Security Concerns

 Any IV-based encryption scheme needs to guarantee the
following:
 Counter Cache Persistency

 Counters must be kept persistent either by battery-backed, using
write-through cache or using NVM-based counter cache.

 IVs’ and Data Integrity
 IVs and Data must be protected from tampering/replaying.
 Authenticated encryption, e.g., Bonsai Merkle Tree, can be used.

26

Backup slides

27

Costs of Data Shredding

28

 Increasing overall number of main memory writes.
 Our experiments showed that up to 42% of main memory writes

can result from shredding.

	Silent Shredder: Zero-Cost Shredding For Secure Non-Volatile Main Memory Controllers
	Outline
	Outline
	Emerging NVMs
	Emerging NVMs
	Data Shredding
	Example of Data Shredding
	How to implement shredding?
	Threat Model
	Encryption/Decryption Process
	Initialization Vectors
	Typical Shredding
	Our Proposal: Silent Shredder
	Software Compatibility
	Design
	Design
	Evaluation Methodology
	Configurations
	Characterization
	Results
	Results
	Other Use Cases
	Summary
	Slide Number 24
	Encryption Assumption
	Security Concerns
	Backup slides
	Costs of Data Shredding

