
Silent Shredder: Zero-Cost Shredding For
Secure Non-Volatile Main Memory Controllers

Amro Awad (NC State University)
Pratyusa Manadhata (Hewlett Packard Labs)

Yan Solihin (NC State University)
Stuart Haber (Hewlett Packard Labs)

William Horne (Hewlett Packard Labs)

1 ASPLOS 2016 2-6th April

Outline

 Background

 Related Work

 Goal

 Design

 Evaluation

 Summary

2

Outline

 Background

 Related Work

 Goal

 Design

 Evaluation

 Summary

3

Emerging NVMs

 Emerging NVMs are promising replacements for DRAM.
 Fast (comparable to DRAM).
 Dense.
 Non-Volatile: persistent memory, no refresh power.

 Examples:
 Phase-Change Memory (PCM).
 Memristor.

4

Source: http://www.techweekeurope.co.uk/

Emerging NVMs

 NVMs have their drawbacks:
 Limited endurance (e.g., PCM has ~108 writes per cell).
 Slow writes (e.g., PCM has ~150ns write latency).
 Data Remanence attacks are easier!

 Requirements for using NVMs:
 Encrypt Data.
 Reduce number of writes, e.g., DCW and Flip-N-Write.

5

Encryption reduces
efficiency of DCW and

Flip-N-Write

Data Shredding

6

Data Shredding: The operation of zeroing out memory to
avoid data leak.

 It prevents data leak between processes or virtual machines.
 Expensive:
 Up to 40% of page fault time could be spent in zeroing pages.
 For tested graph analytics apps, about 41.9% of memory writes

could result from shredding.

VM

Example of Data Shredding

7

NVM

Hypervisor

1- Request allocation 2- Zero out

Process

Process
OS

3- Request allocation

4- Zero outVM

How to implement shredding?

8

Technique No cache
pollution

Low-
processor

time

No Bus Traffic No Memory
Writes

Persistent

Regular stores ✗ ✗ ✗ (indirectly) ✗ (indirectly) ✗

Non-Temporal Stores ✔ ✗ ✗ ✗ ✔

DMA-Support Non-
Temporal Bulk Zeroing
[Jiang, PACT09]

✔ ✔ ✗ ✗ ✔

RowClone (DRAM
specific) [Shehadri,
MICRO 2013]

✔ ✔ ✔ ✗ ✔

Can we shred
without writing?

Threat Model

 Physical access to the memory.

 Snoop memory bus.

9

Encryption/Decryption Process

 Encryption/Decryption: CTR-mode.

 The IV must change every time you encrypt new data.
 Key insight: IV used for encryption = IV used for decryption.

10

Initialization Vector (IV)

Last-level Cache
(LLC)

Encryption Key

XOR

1- Cache line miss

2- Retrieve unique IV

3- Generate One-Time Pad (OTP)

Secure Area

3- Submit read request

4- Receive from NVM5- Return decrypted

Initialization Vectors

 We use Split-Counter Scheme [C. Yan, ISCA 2006] :

11

Cache line 0
512-bits

4KB Page (64 Cache lines) Cache line 1
512-bits

Cache line 63
512-bits

…

Major (per page)

…

64-bit 7-bit 7-bit … 7-bit

Major Minor Cache line address
IV

Padding

Typical Shredding

12

Counter
Cache

Write encrypted
Zero Page X

NVM
Encryption/
Decryption

Read & update counters

Non-temporal Bulk Shredding

Page X

Our Proposal: Silent Shredder

 Key idea: instead of zeroing shredded page, make it unintelligible
 By changing the key or IV prior to decryption

 Design options:
 Have a key for every process

- Impractical: the memory controller needs to know process ID.

- Shared data requires same key.

 Increment all minor counters of a page
- Increases re-encryption frequency: minor counters will overflow faster.

 Increment the major counter

13

Software Compatibility

 To achieve software compatibility, would like to have zero cache lines
for new/shredded pages.

 Shredding: Increment major counter and zero all minor counters.

 Zero-filled cache lines are returned for zeroed minor counters.

 When minor counter overflows, it starts from 1.

14

Design

15

Proc

Memory
Controller

+1

P

Cache and
Coherence
Controller

Counter
Cache

Tag Major
Ctr

Minor counters

00 0000

1. Shred p

3. Increment M
reset m1 … m64

5. Done
2. Invalidate p

4. Acknowledge

Design

16

Counter
Cache

Tag
Major

Ctr Minor counters

=0?

NVMM

MC

Dk

MUX

LLC

00..02. Read the minor
counter of the block x 3b. Yes

3a. No: fetch x

4. Return the fetched block
Or a zero-filled block

1. Miss x

Evaluation Methodology

 To evaluate our design, we use Gem5 to run a modified kernel.
 Added shred command to execute inside kernel’s clear_page function.

 Baseline uses non-temporal stores bulk zeroing.

 We use multi-programmed workloads from SPEC 2006 and
PowerGraph suites.

 Warm up 1B then run 500M instructions on each core (~4B
overall) from initialization and graph construction phases.

 We assume battery-backed Counter Cache.

17

Configurations

18

Processor

CPU 8-Cores, X86-64, 2GHz clock

L1 Cache 2 cycles, 64KB size, 8-way, LRU, 64B block size

L2 Cache 8 cycles, 512KB size, 8-way, LRU, 64B block size

L3 Cache Shared, 25 cycles, 8MB size, 8-way, LRU, 64B block size

L4 Cache Shared 35 cycles, 64MB size, 8-way, LRU, 64B block size

Main Memory
(NVM)

Capacity 16GB

Channels 2 channels

Channel bandwidth 12.8 GB/s

Read/Write latency 75ns/150ns

IV Cache 10 cycles, 4MB capacity, 8-way associativity, 64B blocks

Operating
System

OS Gentoo

Kernel 3.4.91

Characterization

19

Results

20

50.3% read traffic reduction
46.5% (Very high shredding)

48.6% write reduction
44.6% (very high shredding)

Results

21

6.4% IPC Improvement
19.3% (very high shredding)

3.3x reads speed up
2.8x (very high shredding)

Other Use Cases

 Bulk zeroing: Silent Shredder can be used for initializing large areas.
 Large-Scale Data Isolation: Fast data shredding for isolation across

VMs or isolated nodes.
 Fast and efficient virtual disk provisioning when using byte-

addressable NVM devices.
 Garbage collectors in managed programming languages.

22

Summary

 We eliminate writes due to data shredding.

 Our scheme is based on manipulating IV values.

 Silent Shredder leads to write reduction and
performance improvement.

 Applicable to other cases.

23

Thanks!
Questions

24

Encryption Assumption

 Encryption: CTR-mode.

 Same IV should never be reused
for encryption.

 OTP generation doesn’t need
the data.

25

Initialization Vector (IV)

Encryption Global Key

XOR
CiphertextPlaintext

One Time Pad (OTP)

Security Concerns

 Any IV-based encryption scheme needs to guarantee the
following:
 Counter Cache Persistency

 Counters must be kept persistent either by battery-backed, using
write-through cache or using NVM-based counter cache.

 IVs’ and Data Integrity
 IVs and Data must be protected from tampering/replaying.
 Authenticated encryption, e.g., Bonsai Merkle Tree, can be used.

26

Backup slides

27

Costs of Data Shredding

28

 Increasing overall number of main memory writes.
 Our experiments showed that up to 42% of main memory writes

can result from shredding.

	Silent Shredder: Zero-Cost Shredding For Secure Non-Volatile Main Memory Controllers
	Outline
	Outline
	Emerging NVMs
	Emerging NVMs
	Data Shredding
	Example of Data Shredding
	How to implement shredding?
	Threat Model
	Encryption/Decryption Process
	Initialization Vectors
	Typical Shredding
	Our Proposal: Silent Shredder
	Software Compatibility
	Design
	Design
	Evaluation Methodology
	Configurations
	Characterization
	Results
	Results
	Other Use Cases
	Summary
	Slide Number 24
	Encryption Assumption
	Security Concerns
	Backup slides
	Costs of Data Shredding

