—
NC STATE
et ackard UNIVERSITY

Silent Shredder: Zero-Cost Shredding For @
Secure Non-Volatile Main Memory Controllers

Amro Awad (NC State University)
Pratyusa Manadhata (Hewlett Packard Labs)
Yan Solihin (NC State University)
Stuart Haber (Hewlett Packard Labs)
William Horne (Hewlett Packard Labs)

ASPLOS 2016 2-6% April



Outline

Background
Related Work
Goal

Design
Evaluation

Summary




Outline

Background

Related Work
Goal

Design
Evaluation

Summary




Emerging NVMs

+ Emerging NVMs are promising replacements for DRAM.
+ Fast (comparable to DRAM).
+ Dense.
+ Non-Volatile: persistent memory, no refresh power.

+ Examples:
+ Phase-Change Memory (PCM).
+ Memristor. o—————rrr




Emerging NVMs

+ NVMs have their drawbacks:
+ Limited endurance (e.g., PCM has ~108 writes per cell).
+ Slow writes (e.g., PCM has ~150ns write latency).
+ Data Remanence attacks are easier!

Encryption reduces
efficiency of DCW and
Flip-N-Write

+ Requirements for.using NVMs:
+ Encrypt Data. 4}3
+ Reduce number of writes, e.g., DC\W




Data Shredding

avoid data leak.

[Data Shredding: The operation of zeroing out memory to ]

It prevents data leak between processes or virtual machines.

Expensive:

¢ Up to 40% of page fault time could be spent in zeroing pages.

¢ For tested graph analytics apps, about 41.9% of memory writes
could result from shredding.

6




Example of Data Shredding

VM 4- Zero out

3- Request allocation

—3F

1- Request allocation \ 2- Zero out

Hypervisor




Technique

No cache
pollution

Low- No Bus Traffic
processor
time

No Memory
Writes

Persistent

Regular stores

Non-Temporal Stores

DMA-Support Non-
Temporal Bulk Zeroing
[Jiang, PACTO09]

X (indirectly)

Can we shred
without writing?

X

X

RowClone (DRAM
specific) [Shehadri,
MICRO 2013]




Threat Model

NVM

+ Physical access to the memory.

+ Snoop memory bus. Memory Bus




Encryption/Decryption Process

+ Encryption/Decryption: CTR-mode.

3- Submit read request
-\5- Return decrypted 4- Receive from NVM

3- Generate One-Time Pad (OTP)
1- Cache line miss
Key
2- Retrieve unique IV

Secure Area

+ The IV must change every time you encrypt new data.
+ Key insight: IV used for encryption = IV used for decryption.

10




Initialization Vectors

+ We use Split-Counter Scheme [C. Yan, ISCA 2006] :

: Cacheline O Cachelinel | ... | Cacheline 63
4KB Page (64 Cache Ilnes) 512-bits 512-bits 512-bits

64-bit | 7-bit 7-bit 7-bit

Major (per page)
Major  Minor Cache line address Padding
1V | | | N




Typical Shredding

Non-temporal Bulk Shredding

Write encrypted

Zero Page X :
Encryption/
Decryption

Read & update counters




Our Proposal: Silent Shredder

+ Key idea: instead of zeroing shredded page, make it unintelligible
+ By changing the key or IV prior to decryption

<+ Design options:
+ Have a key for every process

Impractical: the memory controller needs to know process ID.

Shared data requires same key.

+ Increment all minor counters of a page

Increases re-encryption frequency: minor counters will overflow faster.

+ Increment the major counter




Software Compatibility

To achieve software compatibility, would like to have zero cache lines
for new/shredded pages.

Shredding: Increment major counter and zero all minor counters.
Zero-filled cache lines are returned for zeroed minor counters.

When minor counter overflows, it starts from 1.




1.Shred p

‘/5. Done

Memory 2. Invalidate p Cache and
Controller €— —> Coherence
Controller

3. Increment M
reset mi... mé4

' 4. Acknowledge

>

) <
Tag Major Minor counters
Ctr




1. Miss x

inor counters > 4. Return the fetched block
Or a zero-filled block

Counter
Cache

2. Read the minor
counter of the block x 3b.Yes

3a. No: fetch x




Evaluation Methodology

To evaluate our design, we use Gem>5 to run a modified kernel.
+ Added shred command to execute inside kernel’s clear_page function.

Baseline uses non-temporal stores bulk zeroing.

We use multi-programmed workloads from SPEC 2006 and
PowerGraph suites.

Warm up 1B then run 500M instructions on each core (~4B
overall) from initialization and graph construction phases.

We assume battery-backed Counter Cache.

17




Configurations

Processor

CPU

8-Cores, X86-64, 2GHz clock

L1 Cache

2 cycles, 64KB size, 8-way, LRU, 64B block size

L2 Cache

8 cycles, 512KB size, 8-way, LRU, 64B block size

L3 Cache

Shared, 25 cycles, 8MB size, 8-way, LRU, 64B block size

L4 Cache

Shared 35 cycles, 64MB size, 8-way, LRU, 64B block size

Main Memory
(NVM)

Capacity

16GB

# Channels

2 channels

Channel bandwidth

12.8 GB/s

Read/Write latency

75ns/150ns

IV Cache

10 cycles, 4MB capacity, 8-way associativity, 64B blocks

Operating
System

oS

Gentoo

Kernel

3.4.91




Benchmark

@
)
(2]
(a4
(=)
=
<
<
@
e
=
n

Characterization

3888888 °

suoIIdNIISU| UOH[IIN /SPRiYs #




44.6% (very high shredding)

48.6% write reduction
46.5% (Very high shredding)

50.3% read traffic reduction

02 31dNIS

ANVYYIOVL ,
¥IWAH JINVYIDVd

SOVINOND UIWWH
SOVINOMD

oo oo

SWID
259
SSANVD SSINVD
vad Ivaa
SNLovo SNLOVD
Bl
SIAYME
d1Z9
dYLSY
sN3z
NVYIvX
XINIHdS
X31d0OS
ONIrs
AVYAOd
T¥3d 143d
dd1lINWO ddlINWO
AnvN AWvN

DN N
INVNOEIT WNLNVNDEI
agansan a€ansa

gl wWan
__uWNI ._u_w.nI

ings

Benchmark
Read traffic sav

X31dOs
ONArs
AVHAOd

Write savings

sBuiAes a3lapn sbulaes peay




3.3x reads speed up
2.8x (very high shredding)

DMSG.&.ZO

dn padds pesy Aloway

IMOT102™ITdNIS
JINVYIOVd
43IWWAH
SOVHWOND
o2

SW35
ol
SSINVD
Ivaa
SNLOVD
Eb ]
SIAVME
diZd
yvisy
snN3z
NYI¥X
XINIHdS
X31d085
ONIrs
AVYAQd
T¥3d
ddLlINWO
AWVYN
iy
WNLNYNDAIT
acansal
wel

¥9%H

Benchmark

Relative IPC when using Silent Shredder

6.4% IPC Improvement

(very high shredding)

19.3%

Un_

Eb-Lem) |
SNI¥C105731d
ANVE3DVd
YIWWH
SOVHOYD
o]

SW3Id
209
SSIANVD
Iv3ad
SNLOVD
40W
SIAVME
dizg
YvLSY
snN3z
N¥YI¥X
XINIHdS
X37dos
ONIrs
AVYAOd
43d
dd1lINWO
ANVYN
ally]
WNLNYNDAT
agarsal
wal

Y9zH

Benchmark




Other Use Cases

+ Bulk zeroing: Silent Shredder can be used for initializing large areas.

+ Large-Scale Data Isolation: Fast data shredding for isolation across
VMs or isolated nodes.

+ Fast and efficient virtual disk provisioning when using byte-
addressable NVM devices.

+ Garbage collectors in managed programming languages.




Summary

+ We eliminate writes due to data shredding.
+ Our scheme is based on manipulating IV values.

+ Silent Shredder leads to write reduction and
performance improvement.

+ Applicable to other cases.




Thanks!

Questions




Encryption Assumption

Encryption: CTR-mode. Plaintext Ciphertext

Same |V should never be reused One Time Pad (OTP)
for encryption.

: : @ Global Key
OTP generation doesn’'t need

the data.




Security Concerns

+ Any IV-based encryption scheme needs to guarantee the
following:
+ Counter Cache Persistency

+ Counters must be kept persistent either by battery-backed, using
write-through cache or using NVM-based counter cache.

+ IVs' and Data Integrity
+ IVs and Data must be protected from tampering/replaying.
+ Authenticated encryption, e.g., Bonsai Merkle Tree, can be used.




Backup slides




Costs of Data Shredding

+ Increasing overall number of main memory writes.

+ Our experiments showed that up to 42% of main memory writes
can result from shredding.

Relative number of writes

The Impact of Kernel Shredding on Main Memory Writes

©c o o =
a 0 B N
[ R B

EEEEEEENENETHR
H 1 HEESHEHBS /(I N S

B Non-Temporal

ONo-Zeroing

Benchmark



	Silent Shredder: Zero-Cost Shredding For Secure Non-Volatile Main Memory Controllers
	Outline
	Outline
	Emerging NVMs
	Emerging NVMs
	Data Shredding
	Example of Data Shredding
	How to implement shredding?
	Threat Model
	Encryption/Decryption Process
	Initialization Vectors
	Typical Shredding
	Our Proposal: Silent Shredder
	Software Compatibility
	Design
	Design
	Evaluation Methodology
	Configurations
	Characterization
	Results
	Results
	Other Use Cases
	Summary
	Slide Number 24
	Encryption Assumption
	Security Concerns
	Backup slides
	Costs of Data Shredding

