
1

An Attack Surface Metric

Pratyusa K. Manadhata
Carnegie Mellon University

2

Context: Security Metrics
Software vendors are spending big on security.

Gauging progress is critical for secure software development.
We need measurements and metrics.

How secure is
our software?

Are we better-off
than before?

Which is more secure: XP or Vista? Ubuntu
or Fedora?

3

We Need Metrics Now!

• A long standing research challenge
[ACSAC 01, CRA 03, DIMACS 03, CSTB 07]

Toward a Safer and More Secure Cyberspace
[CSTB 2007]:

“..though many benefits would flow from the invention of good
metrics, the challenge in this cybersecurity research area is
particularly great, and some very new ideas will be needed if
cybersecurity metricians are to make more progress.”

4

Our Approach: Attack Surface
Measurement (ASM)

Measure the system’s attack surface

How can we quantify a
software system’s

security?

5

Motivation: ASM is Useful to both
Industry and Consumers

A guide in consumers’ decision making process

A tool in the software development lifecycle to
improve security

• design, implementation, testing,
deployment, and maintenance

6

Attack Surface Reduction (ASR)
Mitigates Risk

Software will ship with known and future
vulnerabilities

Traditional industry approach: code quality
improvement

Reduce attack surface to increase the difficulty
and decrease the impact of future exploitation

7

Code Quality and ASR Complement
Each Other

Attack Surface Measurement
Low High

Good

Bad

Code
Quality

Medium
Security Risk

Medium
Security Risk

High
Security Risk

Low
Security Risk

8

Inspiration: Relative Attack Surface Quotient for
7 Versions of Windows [HPW03]

0

100

200

300

400

500

600

700

Windows NT 4 Windows 2000 Windows Server 2003

RASQ RASQ with IIS enabled RASQ with IIS Lockdown

Windows Server 2003 is “more
secure” than previous versions.

9

Linux Attack Surface Measurements

Confirms perception that Debian is
more secure than RedHat

Attack Vector Debian RH Default RH Facilities RH Used

Open socket 15 12 40 41

Open RPC endpoint 3 3 3 3

Services running as root 21 26 29 30

Services running as nonroot 3 6 8 8

Setuid root programs 54 54 72 72

Local user accounts 21 25 33 34

User id = root accounts 0 4 3 3

Unpassworded accounts 0 0 2 2

Nobody account 1 1 1 1

Weak file permission 7 7 21 37

Scripts enabled 1 2 2 2

10

Lessons Learned from Windows and
Linux Measurements

• Measurement method is ad-hoc

• Requires a security expert

• Focus is on measuring the attack surfaces of
operating systems

11

Research Goals
• Formalize the notion of attack surface

• Introduce a systematic attack surface
measurement method
– Anyone, anywhere, anything

• Validate the method

• Demonstrate the uses of the method

12

Intuition Behind Attack Surfaces

system
surface

A system’s attack surface is the ways in which an
adversary can enter the system and potentially
cause damage.

1. Methods 3. Data

Attacks

Entry/Exit
Points

Hence we define a system’s attack surface in terms
of the system’s resources (i.e., methods, channels,
and data items).

2. Channels

13

Model of a System and its
Environment

A system, s, and its environment, Es= 〈U, D, T={t1, t2}〉.

s Es

t1 t2

DU

Formal model uses I/O automata [LT89] .

14

Not All Resources Are Part of the
Attack Surface

• Only those resources that the attacker can use to
send data into or receive data from the system are
relevant.

• We introduce the formal entry point and exit point
framework to identify the relevant resources.

15

Entry Point and Exit Point Framework

• Entry Points/Exit Points
– Direct (input/output action)
– Indirect (internal action)

• Channels (e.g., sockets and pipes)
– c є Res(m.pre)

• Untrusted Data Items (e.g., files)
– d є Res(m.post), d є Res(m.pre)

U/s’

m

D/s’

m

D

s

16

Attack Surface Definition

• Definition

 M: set of entry points and exit points

 C: set of channels

 I: set of untrusted data items.

attack surface = 〈M, C, I〉

Theorem: Given an environment, E, if AS(A) ≥ AS(B),
then Attacks(A||E) Attacks(B||E).⊇

17

Not All Resources Contribute Equally
to the Attack Surface

• Contribution ∝ Damage Potential

Contribution ∝ (Attacker Effort) -1

• Contribution = Damage Potential
Attacker Effort

Higher Damage Potential ⇒ Stronger m.post
⇒ more methods can follow m

Lower Attacker Effort ⇒ Weaker m.pre
⇒ m can follow more methods

18

Attack Surface Measurement (ASM)

• ASM(A) ≥ ASM(B) if there exists a nonempty
set, R, of resources s.t.
∀r є R. contribution(r, A) ≥ contribution(r, B).

Theorem: Given an environment, E, if ASM(A) ≥ ASM(B),
then Attacks(A||E) Attacks(B||E).⊇

19

Quantitative Attack Surface
Measurement

• Assume der: method → Q.
– Similarly, for channel and data.

ASM = 〈 , , 〉(m)der
Mm

∑
∈

(c)der
Cc

∑
∈

(d)der
Id

∑
∈

(m)der)m(p
Mm

∑
∈

probability = 1 consequence

• Analogous to risk modeling

20

Abstract Measurement Method

1. Identify a set, M, of entry points and exit
points, a set, C, of channels, and a set, I, of
untrusted data items.

2. Estimate each relevant resource’s damage
potential-effort ratio, der.

3. Compute Attack Surface Measurement =

〈 , , 〉 .(m)der
Mm

∑
∈

(c)der
Cc

∑
∈

(d)der
Id

∑
∈

21

C Measurement Method and Examples

• FTP Servers
– ProFTP 1.2.10 , Wu-FTP 2.6.2

• IMAP Servers
– Courier 4.0.1, Cyrus 2.2.10

22

Step 1: Identify Relevant Resources

• Entry Points and Exit Points
– Static analysis
– C library methods (e.g., read) for data exchange
– Call graph

• Channels and Untrusted Data Items
– Run time monitoring
– Open channels
– Data read and written

23

Step 2: Damage Potential-Effort Ratio

Access RightsTypeData Items
Access RightsProtocolChannel
Access RightsPrivilegeMethod

Attacker EffortDamage
Potential

Resource

Impose a total ordering among the values of the attributes
and assign numeric values accordingly, e.g.,

root = 5 and auth = 3.

24

FTP Measurement Results

0
50

100
150
200
250
300
350
400
450

Meth
od

Chan
nel

Data

AS
 M

ea
su

re
m

en
ts

ProFTP 1.2.10
Wu-FTP 2.6.2

ProFTP = 〈312.9, 1.0, 18.9〉, Wu-FTP = 〈392.3, 1.0, 17.6〉

Use domain knowledge to decide which dimension
presents more risk and choose accordingly.

25

Validation
• Validating a software measure is hard [KPF97,….]

– security metric is even harder

Software
measure

Attack
surface

MS Bulletins, Expert
Survey

Liu and Traore independently validated our metric [LT07].

Prediction
System

Security
Risk

IO Automata Model,
Patch Analysis,
Anecdotal Evidence

26

Validating the Measurement Method

Key Assumptions
• Three dimensions of the attack surface
• Damage potential-effort ratio
• Six attributes

– method privilege, method access rights, channel
protocol, channel access rights, data item type,
and data item access rights

27

Statistical Analysis of Microsoft
Security Bulletins (MSB)

• An MSB mentions a vulnerability and resources
needed for exploitation

• Are methods, channels, and data used in the
exploitation?

• Analyzed MSBs from 2004-2006

Data

Channels

Methods

28

Results: The Attributes are Indicators
of Damage Potential and Effort

Attribute Significance Correlation

Privilege

Method Access Rights

Protocol ?
Channel Access Rights

Type ?
Data Access Rights

29

Expert Linux System Administrator
Survey

• MSB has no data relevant to a resource’s
attackability
– Could not validate damage potential-effort ratio

• Surveys are widely used to collect a wide range of
data
– Prior work uses surveys to validate measures [K87, ….]
– Feedback from one target user group (Industrial

collaboration for other target user group)
– W.r.t. Linux (MSB w.r.t. Windows)

30

Results: A Majority of the Subjects
Agree With Our Measurement Method

Data

Channels

Methods

Data Access Rights

?Type

Channel Access Rights

?Protocol

Method Access Rights

Privilege

Damage
Potential-
Effort Ratio

31

Validating the Prediction System

• Show that if system A is more secure than
system B, then ASM(A) < ASM(B)

• Assumption: Vulnerability patches improve
software security
– ASM(After Patch) < ASM(Before Patch)

Patches reduce attack surface measurement

32

Results: A Majority of the Patches
Reduce ASM

Software Percentage of
Patches that
reduce ASM

Significance
(p< 0.05)

Firefox 2.0 67%

ProFTP (all) 70%

All NVD Bulletins 76.9%

33

Anecdotal Evidence from Industry

• Microsoft
– Sasser Worm
– Nachi Worm
– Zotob Worm

• Firefox 2.0
– SSL buffer overflow

34

Collaboration with SAP

• SAP is world’s largest provider of enterprise-
scale software
– Complex technology platforms and business

applications

• Demonstrate that the measurement method
scales to enterprise-scale software

• Receive feedback from software architects
and developers

35

Java Measurement Tool Screenshot

36

Results

• Measured the attack surface of a key
component of SAP component
– Measurement results conform to expectation
– Detailed tool output, incremental analysis, and

what-if scenarios are useful for attack surface
reduction

– Lessons learned

37

ASM in Software Development
LifeCycle

Maintenance

Deployment

Testing

Design

Implementation
Compare and

reduce ASM from
version to version
[Microsoft, Firefox,

OpenSSH]

Use ASM to guide
testing and code

inspection
[MuSecurity, SAP]

Use ASM to choose
a secure

configuration
[Microsoft, Firefox]Use ASM in patch

implementation

38

Future Work: Software Development

• Range analysis

• Other uses
– ``Safe’’ software composition
– Testing, deployment, maintenance

Min Max

39

Future Work: Software Consumers

• Attack surface measurement in the absence of
source code
– Components as Entry/Exit points
– Channels and Data as before

• Multiple metrics are needed for decision
support

How do we combine multiple measures?

40

Related Work-1

• Prior work assumes the knowledge of
vulnerabilities [AB95, VGMCM96, ODM99…]

• ASM is based on a system’s inherent
properties
– Formal framework encompasses past, present,

and future vulnerabilities
– Complementary to prior work

41

Related Work-2

• Prior work takes an attacker-centric approach
[S99, MBFB05, LB08,..]

• ASM takes a system-centric approach
– Depends on a system’s design
– No assumptions about the attacker
– Can be used as a tool in software development

42

Related Work-3

• Prior work is conceptual in nature and haven’t
been applied to real systems [AB95, MGVT02,
S04,..]

• We measured the attack surfaces of
real-world software
– FTP servers, IMAP servers
– SAP business applications

43

Summary

• Introduced a pragmatic approach for security
measurement
– Software industry found it useful [Microsoft, Firefox,

OpenSSH, MuSecurity, SAP, ..]

• First step in the grander challenge of security metrics
– Understanding over time will lead to more meaningful

metrics

Acknowledgements: Jeannette Wing, Roy Maxion, Virgil Gligor, Mike
Reiter, Yuecel Karabulut, Effrat Keren, Dilsun Kaynar, Kymie Tan,
Gourav Kataria, Miles McQueen, Mark Flynn, Michael Howard, Paul
Hoffman, Mary Shaw, and Survey Participants.

44

Backups

45

I/O Automata [LT89]

• Action Signature
– Input, Output, Internal

actions
– Pre and Post conditions

m.pre and m.post

• Composition
– Es = (Uio || Dio || ())
– P = sio || Es io io

io

Tt
t||

∈

S E
m m

n n

46

Validation of the Attributes

• An MSB has a severity rating and mentions the six
resources attributes

Impact Damage Potential

Difficulty Attacker Effort

Significant
Predictor

Two sided Z-test (p < 0.05)

Correlation Sign of Coefficient in
Ordered Logistic Regression

47

Inspiration: Howard’s Relative Attack
Surface Quotient (RASQ)[H03]

• Howard’s informal RASQ Measurement
Method
– Identify a system’s attack vectors
– Assign weights to the attack vectors to reflect

their attackability
– RASQ = sum of the weighted counts of the attack

vectors

48

Direct Entry Points

API Invocation

Data flow

m

D

(c)

m

s’

(d)

m m

s’

(b)(a)

U

Methods that directly receive data.

direct entry point: an input action with
a matching output action

49

Indirect Entry Points

API Invocation
Data flow

m1

Es

m
(c)

m2

m

Es

(d)

indirect entry point: internal action
(m1.post => m.post) Λ

(d є Res(m1.post) Λ d є Res(m.pre))

m1

Es

m2

m

Es

(b)
m
(a)

Methods that indirectly receive data.

50

Channels and Data

s

D

s

D

Channels (e.g., sockets and pipes)
• c є Res(m.pre)

Untrusted Data Items (e.g., files)

d є Res(m.post) d є Res(m.pre)

51

Definition of An Attack

Attacks (sio) = Set of executions of (sio || Es) that
contain either an input action or output action of
sio.

52

Not All Resources Contribute Equally
to the Attack Surface

• contribution α damage potential
α 1/attacker effort

• r1 ≥ r2 if higher damage potential and/or
lower attacker effort

m(MA, CA, DA, MB, CB, DB)

pre: Ppre Λ (MA ≥ m.ef) Λ (CA ≥ c.ef) Λ (DA ≥ d.ef)

post: Ppost Λ (MB ≥ m.dp) Λ (CB ≥ c.dp) Λ (DB ≥ d.dp)

53

Damage Potential-Effort Ratio

• Contribution ∝ Damage Potential

Contribution ∝ (Attacker Effort) -1

• Contribution =

Effort

Damage PotentialEffort Damage Potential
+ =

Damage Potential
Attacker Effort

54

C Measurement Method

AS
Measurements

AS
Computation

Numeric
Values

Entry/Exit
Points

C Library Methods

Runtime
Monitoring

Channels

Data
Items

Source
Code

Compilation
And Execution

Running
Process

Callgraph Generator
And AnalyzerAnnotation

Annotated
Sourcecode

55

Survey Methodology

• Email survey of experienced Linux system
administrators
– Diverse background and geographic location

• Questions on a five point Likert scale [L32]
– Pretesting and interviewing to avoid bias
– Self-selection bias

• Descriptive analysis techniques
– Central tendency bias
– %age of agreement, disagreement, and neither
– t-test (p < 0.05)

56

Not All Patches Are Relevant

• Heuristics: vulnerability type determines
patch relevance
– Use National Vulnerability Database (NVD) type

information
– Infer type if missing

• Not all relevant patches reduce the attack
surface

• Consider local effect of a patch

57

Data Collection for Firefox 2.0

Relevant?

MITRE

Reduces

ASM?

58

Java Measurement Method

• Focus on method dimension
• Entry Points and Exit Points

– Call graph
– Interface methods, methods invoking other

systems’ interfaces and Java I/O library methods

• Damage Potential-Effort Ratio
– Use SAP’s threat modeling process to assign

numbers

59

Tool Usage in Software Development

• Tool produces detailed output
– Guides attack surface reduction

• Incremental analysis

• What-If scenarios
– Addition of a new feature
– Removal of a feature

60

FTP Daemons (method)
1. Access rights do matter.
2. ProFTPD has less unauth and more auth access rights.
1. Access rights don’t matter.
2. Total no of entry and exit points matter.
1. Access rights don’t matter.
2. proftpd privilege level contributes more than auth.

61

Tool Output

Entry (Exit) Point
Contribution

Reason

Measurement

62

References- 1
[ACSAC 01] Rayford B. Vaughn, Ronda R. Henning, and Ambareen Siraj. Information

assurance measures and metrics - state of practice and proposed taxonomy. In
Proc. of Hawaii International Conference on System Sciences, 2003.

[CRA 03] Computing Research Association (CRA). Four grand challenges in
trustworthy computing. http://www.cra.org/reports/trustworthy. computing.pdf,
November 2003.

[DIMACS 03] Gary McGraw. From the ground up: The DIMACS software security
workshop IEEE Security and Privacy, 1(2):59–66, 2003.

[CSTB 07] Seymour E. Goodman and Herbert S. Lin, editors. Toward a Safer and More
Secure Cyberspace. The National Academics Press, 2007.

[HPW03] M. Howard, J. Pincus, and J.M. Wing. Measuring relative attack surfaces. In
Proc. of Workshop on Advanced Developments in Software and Systems Security,
2003.

63

References- 2
[LT89] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-

Quarterly, 2(3):219–246, September 1989.

[KPF97] Barbara Kitchenham, Shari Lawrence Pfleeger, and Norman Fenton. Towards
a framework for software measurement validation. IEEE Trans. Softw.
Eng.,21(12):929–944, 1995

[LT07] M. Y. Liu and I. Traore. Properties for security measures of software products.
Applied Mathematics and Information Science (AMIS) Journal, 1(2):129–156, May
2007.

[K87] Chris F Kemerer. An empirical validation of software cost estimation models.
Commun.ACM, 30(5):416–429, 1987.

[L32] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,
22(140):5–55, June 1932.

64

References- 3
[AB95] J. Alves-Foss and S. Barbosa. Assessing computer security vulnerability. ACM

SIGOPS Operating Systems Review, 29(3):3–13, 1995.

[VGMCM96] J. Voas, A. Ghosh, G. McGraw, F. Charron, and K. Miller. Defining an
adaptive software security metric from a dynamic software failure tolerance
measure. In Proc. of Annual Conference on Computer Assurance, 1996.

[ODM99] R. Ortalo, Y. Deswarte, and M. Kaˆaniche. Experimenting with quantitative
evaluation tools for monitoring operational security. IEEE Transactions on
Software Engineering, 25(5):633–650, 1999.

[S99] Bruce Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal,
1999.

[MBFB05] Miles A. McQueen, Wayne F. Boyer, Mark A. Flynn, and George A. Beitel.
Timeto-compromise model for cyber risk reduction estimation. In ACM CCS
Workshopon Quality of Protection, September 2005.

65

References- 4
[LB08] David John Leversage and Eric James Byres. Estimating a system’s mean time-

tocompromise. IEEE Security and Privacy, 6(1):52–60, 2008.

[MGVT02] Bharat B. Madan, Katerina Goseva-Popstojanova, Kalyanaraman
Vaidyanathan, and Kishor S. Trivedi. Modeling and quantification of security
attributes of software systems. In DSN, pages 505–514, 2002.

[S04] Stuart Edward Schechter. Computer Security Strength & Risk: A Quantitative
Approach. PhD thesis, Harvard University, 2004.

	An Attack Surface Metric�
	Context: Security Metrics
	We Need Metrics Now!
	Our Approach: Attack Surface Measurement (ASM)
	Motivation: ASM is Useful to both Industry and Consumers
	Attack Surface Reduction (ASR) Mitigates Risk
	Code Quality and ASR Complement Each Other
	Inspiration: Relative Attack Surface Quotient for 7 Versions of Windows [HPW03]
	Linux Attack Surface Measurements
	Lessons Learned from Windows and Linux Measurements
	Research Goals
	Intuition Behind Attack Surfaces
	Model of a System and its Environment
	Not All Resources Are Part of the Attack Surface
	Entry Point and Exit Point Framework
	Attack Surface Definition
	Not All Resources Contribute Equally to the Attack Surface
	Attack Surface Measurement (ASM)
	Quantitative Attack Surface Measurement
	Abstract Measurement Method
	C Measurement Method and Examples
	Step 1: Identify Relevant Resources
	Step 2: Damage Potential-Effort Ratio
	FTP Measurement Results
	Validation
	Validating the Measurement Method
	Statistical Analysis of Microsoft Security Bulletins (MSB)
	Results: The Attributes are Indicators of Damage Potential and Effort
	Expert Linux System Administrator Survey
	Results: A Majority of the Subjects Agree With Our Measurement Method
	Validating the Prediction System
	Results: A Majority of the Patches Reduce ASM
	Anecdotal Evidence from Industry
	Collaboration with SAP
	Java Measurement Tool Screenshot
	Results
	ASM in Software Development LifeCycle
	Future Work: Software Development
	Future Work: Software Consumers
	Related Work-1
	Related Work-2
	Related Work-3
	Summary
	Backups
	I/O Automata [LT89]
	Validation of the Attributes
	Inspiration: Howard’s Relative Attack Surface Quotient (RASQ)[H03]
	Direct Entry Points
	Indirect Entry Points
	Channels and Data
	Definition of An Attack
	Not All Resources Contribute Equally to the Attack Surface
	Damage Potential-Effort Ratio
	C Measurement Method
	Survey Methodology
	Not All Patches Are Relevant
	Data Collection for Firefox 2.0
	Java Measurement Method
	Tool Usage in Software Development
	FTP Daemons (method)
	Tool Output
	References- 1
	References- 2
	References- 3
	References- 4

