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Context: Security Metrics
Software vendors are spending big on security.

Gauging progress is critical for secure software development.
We need measurements and metrics.

How secure is 
our software?

Are we better-off
than before?

Which is more secure: XP or Vista? Ubuntu 
or Fedora?
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We Need Metrics Now! 

• A long standing research challenge
[ACSAC 01, CRA 03, DIMACS 03, CSTB 07]

Toward a Safer and More Secure Cyberspace 
[CSTB 2007]:

“..though many benefits would flow from the invention of good 
metrics, the challenge in this cybersecurity research area is 
particularly great, and some very new ideas will be needed if 
cybersecurity metricians are to make more progress.”
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Our Approach: Attack Surface 
Measurement (ASM)

Measure the system’s attack surface

How can we quantify a 
software system’s 

security?
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Motivation: ASM is Useful to both 
Industry and Consumers

A guide in consumers’ decision making process

A tool in the software development lifecycle to
improve security

• design, implementation, testing, 
deployment, and maintenance
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Attack Surface Reduction (ASR) 
Mitigates Risk

Software will ship with known and future 
vulnerabilities

Traditional industry approach: code quality 
improvement

Reduce attack surface to increase the difficulty
and decrease the impact of future exploitation
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Code Quality and ASR Complement 
Each Other

Attack Surface Measurement
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Inspiration: Relative Attack Surface Quotient for 
7 Versions of Windows [HPW03]
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Windows Server 2003 is “more 
secure” than previous versions.
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Linux Attack Surface Measurements

Confirms perception that Debian is 
more secure than RedHat 

Attack Vector Debian RH Default RH Facilities RH Used

Open socket 15 12 40 41

Open RPC endpoint 3 3 3 3

Services running as root 21 26 29 30

Services running as nonroot 3 6 8 8

Setuid root programs 54 54 72 72

Local user accounts 21 25 33 34

User id = root accounts 0 4 3 3

Unpassworded accounts 0 0 2 2

Nobody account 1 1 1 1

Weak file permission 7 7 21 37

Scripts enabled 1 2 2 2
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Lessons Learned from Windows and 
Linux Measurements

• Measurement method is ad-hoc

• Requires a security expert

• Focus is on measuring the attack surfaces of 
operating systems
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Research Goals
• Formalize the notion of attack surface

• Introduce a systematic attack surface 
measurement method
– Anyone, anywhere, anything

• Validate the method

• Demonstrate the uses of the method
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Intuition Behind Attack Surfaces

system 
surface

A system’s attack surface is the ways in which an 
adversary can enter the system and potentially 
cause damage.

1. Methods 3. Data

Attacks

Entry/Exit 
Points

Hence we define a system’s attack surface in terms 
of the system’s resources (i.e., methods, channels, 
and data items).

2. Channels
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Model of a System and its 
Environment 

A system, s, and its environment, Es= 〈U, D, T={t1, t2}〉.

s Es

t1 t2

DU

Formal model uses I/O automata [LT89] .
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Not All Resources Are Part of the 
Attack Surface

• Only those resources that the attacker can use to 
send data into or receive data from the system are 
relevant.

• We introduce the formal entry point and exit point 
framework to identify the relevant resources.
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Entry Point and Exit Point Framework

• Entry Points/Exit Points
– Direct (input/output action)
– Indirect (internal action)

• Channels (e.g., sockets and pipes)
– c є Res(m.pre)

• Untrusted Data Items (e.g., files)
– d є Res(m.post), d є Res(m.pre)

U/s’

m

D/s’

m

D

s
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Attack Surface Definition

• Definition

 M: set of entry points and exit points

 C: set of channels

 I: set of untrusted data items.

attack surface = 〈M, C, I〉

Theorem: Given an environment, E, if AS(A) ≥ AS(B), 
then Attacks(A||E)       Attacks(B||E).⊇
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Not All Resources Contribute Equally 
to the Attack Surface

• Contribution  ∝ Damage Potential

Contribution ∝ (Attacker Effort) -1

• Contribution = Damage Potential
Attacker Effort

Higher Damage Potential ⇒ Stronger m.post 
⇒ more methods can follow m

Lower Attacker Effort ⇒ Weaker m.pre 
⇒ m can follow more methods
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Attack Surface Measurement (ASM)

• ASM(A) ≥ ASM(B) if there exists a nonempty 
set, R, of resources s.t. 
∀r є R. contribution(r, A) ≥ contribution(r, B).

Theorem: Given an environment, E, if ASM(A) ≥ ASM(B), 
then Attacks(A||E)        Attacks(B||E).⊇
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Quantitative Attack Surface 
Measurement

• Assume der: method → Q. 
– Similarly, for channel and data.

ASM = 〈 , ,                   〉(m)der
Mm

∑
∈

(c)der
Cc

∑
∈

(d)der
Id

∑
∈

(m)der)m(p
Mm

∑
∈

probability = 1 consequence

• Analogous to risk modeling
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Abstract Measurement Method

1. Identify a set, M, of entry points and exit 
points, a set, C, of channels, and a set, I, of 
untrusted data items.

2. Estimate each relevant resource’s damage 
potential-effort ratio, der.

3. Compute Attack Surface Measurement =

〈 ,                  ,                   〉 .(m)der
Mm

∑
∈

(c)der
Cc

∑
∈

(d)der
Id

∑
∈
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C Measurement Method and Examples

• FTP Servers
– ProFTP 1.2.10 , Wu-FTP 2.6.2

• IMAP Servers
– Courier 4.0.1, Cyrus 2.2.10
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Step 1: Identify Relevant Resources

• Entry Points and Exit Points 
– Static analysis
– C library methods (e.g., read) for data exchange
– Call graph

• Channels and Untrusted Data Items
– Run time monitoring
– Open channels
– Data read and written
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Step 2: Damage Potential-Effort Ratio

Access RightsTypeData Items
Access RightsProtocolChannel
Access RightsPrivilegeMethod

Attacker EffortDamage 
Potential

Resource

Impose a total ordering among the values of the attributes 
and assign numeric values accordingly, e.g.,

root = 5 and auth = 3.
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FTP Measurement Results
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ProFTP = 〈312.9, 1.0, 18.9〉, Wu-FTP = 〈392.3, 1.0, 17.6〉

Use domain knowledge to decide which dimension 
presents more risk and choose accordingly.
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Validation 
• Validating a software measure is hard [KPF97,….]

– security metric is even harder

Software 
measure

Attack 
surface

MS Bulletins, Expert 
Survey

Liu and Traore independently validated our metric [LT07].

Prediction 
System

Security 
Risk

IO Automata Model, 
Patch Analysis, 
Anecdotal Evidence
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Validating the Measurement Method

Key Assumptions
• Three dimensions of the attack surface
• Damage potential-effort ratio
• Six attributes

– method privilege, method access rights, channel 
protocol, channel access rights, data item type, 
and data item access rights
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Statistical Analysis of Microsoft 
Security Bulletins (MSB)

• An MSB mentions a vulnerability and resources 
needed for exploitation

• Are methods, channels, and data used in the 
exploitation?

• Analyzed MSBs from 2004-2006

Data

Channels

Methods
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Results: The Attributes are Indicators 
of Damage Potential and Effort

Attribute Significance Correlation

Privilege

Method Access Rights

Protocol ?
Channel Access Rights

Type ?
Data Access Rights
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Expert Linux System Administrator 
Survey

• MSB has no data relevant to a resource’s 
attackability
– Could not validate damage potential-effort ratio

• Surveys are widely used to collect a wide range of 
data
– Prior work uses surveys to validate measures [K87, ….]
– Feedback from one target user group (Industrial 

collaboration for other target user group)
– W.r.t. Linux (MSB w.r.t. Windows)
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Results: A Majority of the Subjects 
Agree With Our Measurement Method

Data

Channels

Methods

Data Access Rights

?Type

Channel Access Rights

?Protocol

Method Access Rights

Privilege

Damage 
Potential-
Effort Ratio
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Validating the Prediction System

• Show that if system A is more secure than 
system B, then ASM(A) < ASM(B)

• Assumption: Vulnerability patches improve 
software security
– ASM(After Patch) < ASM(Before Patch)

Patches reduce attack surface measurement
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Results: A Majority of the Patches 
Reduce ASM

Software Percentage of 
Patches that 
reduce ASM

Significance 
(p< 0.05)

Firefox 2.0 67%

ProFTP (all) 70%

All NVD Bulletins 76.9%
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Anecdotal Evidence from Industry

• Microsoft
– Sasser Worm
– Nachi Worm
– Zotob Worm

• Firefox 2.0
– SSL buffer overflow



34

Collaboration with SAP

• SAP is world’s largest provider of enterprise-
scale software
– Complex technology platforms and business 

applications

• Demonstrate that the measurement method 
scales to enterprise-scale software

• Receive feedback from software architects 
and developers
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Java Measurement Tool Screenshot
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Results

• Measured the attack surface of a key 
component of SAP component
– Measurement results conform to expectation
– Detailed tool output, incremental analysis, and

what-if scenarios are useful for attack surface 
reduction

– Lessons learned
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ASM in Software Development 
LifeCycle

Maintenance

Deployment

Testing

Design

Implementation
Compare and 

reduce ASM from 
version to version 
[Microsoft, Firefox, 

OpenSSH]

Use ASM to guide 
testing and code 

inspection 
[MuSecurity, SAP]

Use ASM to choose 
a secure 

configuration 
[Microsoft, Firefox]Use ASM in patch

implementation 
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Future Work: Software Development

• Range analysis

• Other uses 
– ``Safe’’ software composition
– Testing, deployment, maintenance

Min Max
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Future Work: Software Consumers

• Attack surface measurement in the absence of 
source code
– Components as Entry/Exit points 
– Channels and Data as before

• Multiple metrics are needed for decision 
support

How do we combine multiple measures?
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Related Work-1

• Prior work assumes the knowledge of 
vulnerabilities [AB95, VGMCM96, ODM99…]

• ASM is based on a system’s inherent
properties
– Formal framework encompasses past, present, 

and future vulnerabilities
– Complementary to prior work
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Related Work-2

• Prior work takes an attacker-centric approach 
[S99, MBFB05, LB08,..]

• ASM takes a system-centric approach
– Depends on a system’s design
– No assumptions about the attacker
– Can be used as a tool in software development
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Related Work-3

• Prior work is conceptual in nature and haven’t 
been applied to real systems [AB95, MGVT02, 
S04,..]

• We measured the attack surfaces of           
real-world software
– FTP servers, IMAP servers
– SAP business applications
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Summary

• Introduced a pragmatic approach for security 
measurement
– Software industry found it useful [Microsoft, Firefox, 

OpenSSH, MuSecurity, SAP, ..]

• First step in the grander challenge of security metrics
– Understanding over time will lead to more meaningful 

metrics

Acknowledgements: Jeannette Wing, Roy Maxion, Virgil Gligor, Mike 
Reiter, Yuecel Karabulut, Effrat Keren, Dilsun Kaynar, Kymie Tan, 
Gourav Kataria, Miles McQueen, Mark Flynn, Michael Howard, Paul 
Hoffman, Mary Shaw,  and Survey Participants.



44

Backups
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I/O Automata [LT89]

• Action Signature
– Input, Output, Internal 

actions
– Pre and Post conditions 

m.pre and m.post

• Composition
– Es = (Uio || Dio || (           ))
– P = sio || Es io  io

io

Tt
t||

∈

S E
m m

n n
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Validation of the Attributes

• An MSB has a severity rating and mentions the six 
resources attributes

Impact Damage Potential

Difficulty Attacker Effort

Significant 
Predictor

Two sided Z-test (p < 0.05)

Correlation Sign of Coefficient in 
Ordered Logistic Regression
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Inspiration: Howard’s Relative Attack 
Surface Quotient (RASQ)[H03] 

• Howard’s informal RASQ Measurement 
Method
– Identify a system’s attack vectors
– Assign weights to the attack vectors to reflect 

their attackability
– RASQ = sum of the weighted counts of the attack 

vectors
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Direct Entry Points

API Invocation

Data flow

m

D

(c)

m

s’

(d)

m m

s’

(b)(a)

U

Methods that directly receive data.

direct entry point: an input action with 
a matching  output action
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Indirect Entry Points

API Invocation
Data flow

m1

Es

m
(c)

m2

m

Es

(d)

indirect entry point: internal action
(m1.post => m.post) Λ

(d є Res(m1.post) Λ d є Res(m.pre))

m1

Es

m2

m

Es

(b)
m
(a)

Methods that indirectly receive data.
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Channels and Data

s

D

s

D

Channels (e.g., sockets and pipes)
• c є Res(m.pre)

Untrusted Data Items (e.g., files)

d є Res(m.post)              d є Res(m.pre)
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Definition of An Attack

Attacks (sio) = Set of executions of (sio || Es) that 
contain either an input action or output action of 
sio.
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Not All Resources Contribute Equally 
to the Attack Surface

• contribution α damage potential
α 1/attacker effort

• r1 ≥ r2 if higher damage potential and/or 
lower attacker effort

m(MA, CA, DA, MB, CB, DB)

pre: Ppre Λ (MA ≥ m.ef) Λ (CA ≥ c.ef) Λ (DA ≥ d.ef)

post: Ppost Λ (MB ≥ m.dp) Λ (CB ≥ c.dp) Λ (DB ≥ d.dp)
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Damage Potential-Effort Ratio

• Contribution ∝ Damage Potential

Contribution ∝ (Attacker Effort) -1

• Contribution = 

Effort

Damage PotentialEffort Damage Potential
+ =

Damage Potential
Attacker Effort
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C Measurement Method

AS
Measurements

AS 
Computation

Numeric
Values

Entry/Exit 
Points

C Library Methods

Runtime
Monitoring

Channels

Data 
Items

Source
Code

Compilation
And Execution

Running
Process

Callgraph Generator
And AnalyzerAnnotation

Annotated
Sourcecode
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Survey Methodology

• Email survey of experienced Linux system 
administrators
– Diverse background and geographic location

• Questions on a five point Likert scale [L32]
– Pretesting and interviewing to avoid bias
– Self-selection bias

• Descriptive analysis techniques 
– Central tendency bias
– %age of agreement, disagreement, and neither 
– t-test (p < 0.05) 
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Not All Patches Are Relevant

• Heuristics: vulnerability type determines 
patch relevance
– Use National Vulnerability Database (NVD) type 

information
– Infer type if missing

• Not all relevant patches reduce the attack 
surface

• Consider local effect of a patch
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Data Collection for Firefox 2.0

Relevant?

MITRE

Reduces 

ASM?
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Java Measurement Method

• Focus on method dimension
• Entry Points and Exit Points

– Call graph
– Interface methods, methods invoking other 

systems’ interfaces and Java I/O library methods

• Damage Potential-Effort Ratio
– Use SAP’s threat modeling process to assign 

numbers
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Tool Usage in Software Development

• Tool produces detailed output
– Guides attack surface reduction

• Incremental analysis

• What-If scenarios
– Addition of a new feature
– Removal of a feature
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FTP Daemons (method)
1. Access rights do matter.
2. ProFTPD has less unauth and more auth access rights.
1. Access rights don’t matter.
2. Total no of entry and exit points matter.
1. Access rights don’t matter.
2. proftpd privilege level contributes more than auth.
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Tool Output

Entry (Exit) Point
Contribution

Reason

Measurement
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