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Abstract—Measurement of software security is a long-standing challenge to the research community. At the same time, practical

security metrics and measurements are essential for secure software development. Hence, the need for metrics is more pressing now

due to a growing demand for secure software. In this paper, we propose using a software system’s attack surface measurement as an

indicator of the system’s security. We formalize the notion of a system’s attack surface and introduce an attack surface metric to

measure the attack surface in a systematic manner. Our measurement method is agnostic to a software system’s implementation

language and is applicable to systems of all sizes; we demonstrate our method by measuring the attack surfaces of small desktop

applications and large enterprise systems implemented in C and Java. We conducted three exploratory empirical studies to validate

our method. Software developers can mitigate their software’s security risk by measuring and reducing their software’s attack surfaces.

Our attack surface reduction approach complements the software industry’s traditional code quality improvement approach for security

risk mitigation and is useful in multiple phases of the software development lifecycle. Our collaboration with SAP demonstrates the use

of our metric in the software development process.

Index Terms—Code design, life cycle, product metrics, protection mechanisms, risk mitigation, software security.
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1 INTRODUCTION

MEASUREMENT of security, both qualitatively and quan-
titatively, is a long-standing challenge to the research

community and is of practical import to software industry
today [1], [2], [3], [4]. The software industry is responding
to a growing demand for secure software and is increasing
its effort to create “more secure” products and services
(e.g., Microsoft’s Trustworthy Computing Initiative and
SAP’s Software LifeCycle Security efforts). Is industry’s
effort paying off? Are consumers getting more secure
software and services? Security metrics and measurements
could help both software developers to quantify improve-
ments to their software’s security and consumers to
compare along a security dimension software alternatives
with similar functionality.

In this paper, we introduce the notion of a software
system’s attack surface and present a systematic way to
measure it. Intuitively, a system’s attack surface is the set of
ways in which an adversary can enter the system and
potentially cause damage. Hence, the “smaller” the attack
surface, the more secure the system.

1.1 Motivation

Software vendors traditionally focus on improving code
quality to improve software security and quality; their effort
aims toward reducing the number of design and coding
errors in software. An error causes software to behave
differently from the intended behavior defined by the

software’s specification; a vulnerability is an error that can
be exploited by an attacker. In principle, we can use formal
correctness proof techniques to identify and remove all
errors in software with respect to a given specification and
hence remove all of its vulnerabilities. In practice, however,
building large and complex software devoid of errors, and
hence security vulnerabilities, remains a difficult task. First,
specifications, in particular explicit assumptions, can change
over time, so something that was not an error can become an
error later. Second, formal specifications are rarely written in
practice. Third, formal verification tools used in practice to
find and fix errors, including specific vulnerabilities such as
buffer overruns, usually trade soundness for completeness
or vice versa. Fourth, we do not know the vulnerabilities of
the future, i.e., the errors present in software for which
exploits will be developed in the future.

Software vendors have to embrace the hard fact that their
software will ship with both known and future vulnerabil-
ities and many of those vulnerabilities will be discovered
and exploited. They can, however, reduce the risk asso-
ciated with the exploitation; one way to do so is by reducing
their software’s attack surfaces. A smaller attack surface
mitigates security risk by making the exploitation harder
and by lowering the exploitation’s damage. As shown in
Fig. 1, the code quality effort and the attack surface
reduction approach complement each other in mitigating
security risk. Software developers can use attack surface
measurements as a tool in multiple phases of software
development to mitigate security risk, to prioritize testing
effort, to choose a secure configuration, and to guide
vulnerability patch implementation (Section 6.4).

1.2 Attack Surface Metric

We know from the past that many attacks on a system take
place either by sending data from the system’s operating
environment into the system (e.g., buffer overflow exploita-
tion) or by receiving data from the system (e.g., symlink
attacks). In both of these types of attacks, an attacker
connects to a system, using the system’s channels (e.g.,
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sockets), invokes the system’s methods (e.g., API), and sends
(receives) data items (e.g., input strings) into (from) the
system. An attacker can also send (receive) data indirectly
into (from) a system by using persistent data items (e.g.,
files); an attacker can send data into a system by writing to a
file that the system later reads. Hence, an attacker uses a
system’s methods, channels, and data items present in the
environment to attack the system. We collectively refer to
the methods, channels, and data items as the resources and
thus define a system’s attack surface in terms of the
system’s resources (Fig. 2).

Not all resources, however, are part of the attack surface
and not all resources contribute equally to the attack surface.
A resource is part of the attack surface if an attacker can use
the resource to attack the system; we introduce an entry point
and exit point framework to identify these relevant resources. A
resource’s contribution to the attack surface reflects the
resource’s likelihood of being used in attacks. For example, a
method running with root privilege is more likely to be
used in attacks than a method running with nonroot

privilege. We introduce the notion of a damage potential-effort
ratio to estimate a resource’s contribution.

A system’s attack surface measurement is the total
contribution of the system’s resources along the methods,
channels, and data dimensions. We estimate the methods’
contribution by combining the contributions of the methods
that are part of the system’s attack surface; we similarly
estimate the contributions of the channels and the data items.
A large measurement does not imply that the system has
many vulnerabilities, and having few vulnerabilities does not
imply a small measurement. Instead, a larger measurement
indicates that an attacker is likely to exploit the vulnerabilities
present in the system with less effort and cause more damage
to the system. Given two systems, we compare their attack
surface measurements to indicate, along each of the three
dimensions, whether one is more secure than the other with
respect to the attack surface metric.

The rest of the paper is organized as follows: We briefly
discuss the inspiration behind our research in Section 2. In
Section 3, we use an I/O automata model of a system and
its environment to formalize the notion of the attack surface.
In Section 4, we introduce a method for measuring the
attack surfaces of systems implemented in C and apply our
method to two popular open source Internet Message
Access Protocol (IMAP) servers. We discuss three explora-
tory empirical studies for validating the attack surface
metric in Section 5. In Section 6, we demonstrate that our
method scales to enterprise-scale software by measuring the

attack surfaces of SAP systems implemented in Java [5].
We compare our work with related work in Section 7 and
conclude with a discussion of future work in Section 8.

2 BACKGROUND

Our research is inspired by Michael Howard’s Relative
Attack Surface Quotient measurements [6]. Howard intro-
duced the informal notion of attack surface and proposed a
measurement method for the Windows operating system’s
(OS) attack surface. The first step in his method is
identifying Windows’ attack vectors, i.e., Windows’ features
often used in attacks on Windows. Examples of such
features are services running on Windows, open sockets,
and dynamic web pages. Not all features, however, are
equally likely to be used in attacks. For example, a service
running as SYSTEM is more likely to be attacked than a
service running as an ordinary user. Hence, the second step
in Howard’s method is assigning weights to the attack
vectors to reflect their attackability, i.e., the likelihood of a
feature being used in attacks on Windows; the weights are
the attack vectors’ contributions to the attack surface. The
final step in Howard’s method is estimating the attack
surface by adding the weighted counts of the attack vectors;
for each instance of an attack vector, the attack vector’s
weight is added to the attack surface.

Howard et al. applied Howard’s measurement method
to seven versions of the Windows OS [7]. They identified
20 attack vectors for Windows based on the history of
attacks on Windows and then assigned weights to the attack
vectors based on their expert knowledge of Windows. The
method was ad hoc in nature and was based on intuition;
the results, however, reflected the general perception of
Windows security. For example, Windows Server 2003 was
perceived to have improved security compared to Windows
2000. The measurement results showed that Windows
Server 2003 has a smaller attack surface than Windows 2000.

We applied Howard’s measurement method to Linux to
understand the challenges in applying the method [8]. We
used the history of attacks on Linux to identify 14 attack
vectors. Howard’s method did not include any suggestion
on assigning weights to attack vectors; hence, we did not
assign any explicit weights. Instead, we counted the
number of instances of each attack vector for four versions
of Linux (three Red Hat and one Debian) and compared the
numbers to get the four versions’ relative attack surface
measurements.
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Fig. 2. A system’s attack surface is the subset of the system’s resources
(methods, channels, and data) potentially used in attacks on the system.

Fig. 1. Attack surface reduction and code quality improvement
complement each other.



Our measurements showed that the attack surface notion
held promise, e.g., Debian was perceived to be a more
secure OS and that perception was reflected in our
measurement. We, however, identified two shortcomings
in the method. First, Howard’s method is based on informal
notions of a system’s attack surface and attack vectors.
Second, the method requires a security expert (e.g., Howard
for Windows), minimally to enumerate attack vectors and
assign weights to them. Thus, taken together, nonexperts
cannot systematically apply his method easily.

Our research on defining a systematic attack surface
measurement method is motivated by our above findings.
We use the entry point and exit point framework to identify
the relevant resources that contribute to a system’s attack
surface and we use the notion of the damage potential-effort
ratio to estimate the weights of each such resource. Our
attack surface measurement method entirely avoids the
need to identify the attack vectors. Our method does not
require a security expert; hence software developers with
little security expertise can use the method. Furthermore,
our method is applicable, not just to operating systems, but
also to a wide variety of software such as web servers,
IMAP servers, and application software.

3 FORMAL MODEL FOR A SYSTEM’S ATTACK

SURFACE

In this section, we formalize the notion of a system’s attack
surface using an I/O automata model of the system and its
environment [9]. We define a qualitative measure and a
quantitative measure of the attack surface and introduce an
abstract method to quantify attack surfaces.

3.1 I/O Automata Model

Informally, a system’s entry points are the ways through
which data “enter” into the system from its environment and
exit points are the ways through which data “exit” from the
system to its environment. Many attacks on software systems
require an attacker either to send data into a system or to
receive data from a system; hence the entry points and the
exit points act as the basis for attacks on the system. We chose
I/O automata as our model because our notion of entry
points and exit points maps naturally to the input actions and
output actions of an I/O automaton. Also, the composition
property of I/O automata allows us to reason easily about a
system’s attack surface in a given environment.

An I/O automaton, A ¼ hsigðAÞ; statesðAÞ; startðAÞ;
stepsðAÞi, is a four-tuple, consisting of an action signature,
sigðAÞ, that partitions a set, actsðAÞ, of actions into three
disjoint sets, inðAÞ, outðAÞ, and intðAÞ, of input, output,
and internal actions, respectively; a set, statesðAÞ, of
states; a nonempty set, startðAÞ � statesðAÞ, of start states;
and a transition relation, stepsðAÞ � statesðAÞ � actsðAÞ �
statesðAÞ. An I/O automaton’s environment generates
input and transmits the input to the automaton using input
actions. Conversely, the automaton generates output ac-
tions and internal actions autonomously and transmits
output to its environment. Our model does not require an
I/O automaton to be input-enabled, i.e., unlike a standard
I/O automaton, input actions are not always enabled in our
model. Instead, we assume that every action of an

automaton is enabled in at least one reachable state of the
automaton. We construct an I/O automaton modeling a
complex system by composing the I/O automata modeling
the system’s simpler components. The composition of a set
of I/O automata results in an I/O automaton.

3.1.1 Model

Consider a set, S, of systems, a user, U , and a data store,
D. For a given system, s 2 S, we define its environment,
Es ¼ hU; D; T i, to be a three-tuple where T ¼ S n fsg is
the set of systems excluding s. s interacts with its
environment Es; hence, we define s’s entry and exit
points with respect to Es. Fig. 3 shows a system, s, and its
environment Es ¼ hU; D; fs1; s2; gi. For example, s
could be a web server and s1 and s2 could be an
application server and a directory server, respectively.

We model every system s 2 S as an I/O automaton,
hsigðsÞ; statesðsÞ; startðsÞ; stepsðsÞi. We model the methods
in s’s codebase as actions of the I/O automaton. We specify
the actions, using pre and postconditions: For an action, m,
m:pre and m:post are the pre and postconditions of m,
respectively. A state, st 2 statesðsÞ, of s is a mapping of the
state variables to their values: st : V ar! V al. An action’s
pre- and postconditions are first order predicates on the
state variables. A state transition, hst;m; st0i 2 stepsðsÞ, is
the invocation of an action m in state st, resulting in state
st0. An execution of s is an alternating sequence of actions
and states beginning with a start state and a schedule of an
execution is a subsequence of the execution consisting only
of the actions appearing in the execution.

Every system, s, has a set of communication channels. s’s
channels are the means by which the user U or any system,
s1 2 T , communicates with s. Specific examples of channels
are sockets and named pipes. We model a system’s
channels as the system’s special state variables.

We also model the user U and the data store D as I/O
automata. U and D are global with respect to the systems in
S. For simplicity, we assume only one user U present in the
environment. U represents the adversary who attacks the
systems in S.

We model D as a separate entity to allow sharing of data
among the systems in S.D is a set of typed data items. Specific
examples of data items are strings, URLs, files, and cookies.

3.1.2 Entry Points

A system’s entry points are the methods in its codebase that
receive data from the environment. The methods can
receive data directly or indirectly from the environment.
A method, m, of a system, s, receives data items directly if
either 1) U (Fig. 4a) or a system, s0 (Fig. 4b), in the
environment invokes m and passes data items as input to
m, or 2) m reads data items from D (Fig. 4c), or 3), m
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Fig. 3. A system, s, and its environment, Es.



invokes a method of a system s0 in the environment and
receives data items as results returned (Fig. 4d). A method
is a direct entry point if it receives data items directly from
the environment. Examples of a web server’s direct entry
points are the methods in the web server’s API and the web
server’s methods that read configuration files.

In the I/O automata model, a system, s, can receive data
from its environment if s has an input action, m, and an
entity, s0, in the environment has a same-named output
action m. When s0 performs its output action m and s
performs its input action m, data are transmitted from s0 to
s. We formalize the scenarios when s0 invokes m (Fig. 4b) or
when m invokes s0’s method (Fig. 4d) the same way, i.e., s
has an input action, m, and s0 has an output action m.

Definition 1. A direct entry point of a system s is an input
action, m, of s, such that either 1) U has the output action m
(Fig. 4a), or 2) a system s0 2 T has the output action m
(Figs. 4b and 4d), or 3) D has the output action m (Fig. 4c).

A method, m, of s receives data items indirectly if either
1) a method, m1, of s receives a data item, d, directly and
either m1 passes d as input to m (Fig. 5a) or m receives d as
result returned from m1 (Fig. 5b), or 2) a method, m2, of s
receives a data item, d, indirectly, and either m2 passes d as
input to m (Fig. 5c) or m receives d as result returned from
m2 (Fig. 5d). A method is an indirect entry point if it receives
data items indirectly from the environment. For example, if
a web server’s API method, m, receives login information
from users and passes the information to an authentication
module method, m1, then m is a direct entry point and m1 is
an indirect entry point.

In the I/O automata model, a system’s internal actions
are not visible to other systems in the environment. Hence
we use internal actions to formalize indirect entry points.
We formalize data transmission using actions’ pre and
postconditions. If an input action, m, of a system, s, receives
a data item, d, directly from the environment, then s’s
subsequent behavior depends on d; hence d appears in the
postcondition of m and we write d 2 Resðm:postÞ where

Res : predicate! 2V ar is a function such that for each

postcondition (or precondition), p, ResðpÞ is the set of

resources appearing in p. Similarly, if an action, m, receives

a data item, d, from another action, m1, then d appears in

m1’s postcondition and in m’s precondition. Similar to the

direct entry points, we formalize the scenarios Figs. 5a and

5b the same way and the scenarios Figs. 5c and 5d the same

way. We define indirect entry points recursively.

Definition 2. An indirect entry point of a system, s, is an

internal action, m, of s such that either 1) 9 direct entry point,

m1, of s such that m1:post ) m:pre and 9 a data item, d,

such that d 2 Resðm1:postÞ ^ d 2 Resðm:preÞ (Figs. 5a and

5b), or 2) 9 indirect entry point, m2, of s such that

m2:post ) m:pre and 9 data item, d, such that d 2
Resðm2:postÞ ^ d 2 Resðm:preÞ (Figs. 5c and 5d).

3.1.3 Exit Points

A system’s methods that send data to its environment are the

system’s exit points. For example, a method that writes to a

log file is an exit point. The methods can send data directly or

indirectly to the environment. A method, m, of a system, s,

sends data directly if either 1) U (Fig. 6a) or a system, s0

(Fig. 6b), in the environment invokes m and receives data

items as results returned fromm, or 2)mwrites data items to

D (Fig. 6c), or 3) m invokes a method of a system, s0, in the

environment and passes data items as input (Fig. 6d).
In the I/O automata model, a system, s, can send data to

the environment if s has an output action, m and an entity s0

in the environment has a same-named input action, m.

When s performs its output action m, s0 performs its input

action m, and data are transmitted from s to s0.

Definition 3. A direct exit point of a system, s, is an output

action, m, of s such that either 1) U has the input action m

(Fig. 6a), or 2) a system, s0 2 T , has the input action m (Figs.

6b and 6d), or 3) D has the input action m (Fig. 6c).

A method, m, of s sends data items indirectly to the

environment if either 1) m passes a data item, d, as input to a

direct exit point,m1 (Fig. 7a), orm1 receives a data item, d, as

result returned from m (Fig. 7b), and m1 sends d directly to

the environment, or 2) m passes a data item, d, as input to an

indirect exit pointm2 (Fig. 7c), orm2 receives a data item, d, as

result returned fromm (Fig. 7d), andm2 sends d indirectly to

the environment. A method,m, of s is an indirect exit point ifm

sends data items indirectly to the environment.
Similar to indirect entry points, we formalize indirect exit

points using an I/O automaton’s internal actions. Again, we

define indirect exit points recursively.
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Fig. 4. Direct entry point.

Fig. 5. Indirect entry point.

Fig. 6. Direct exit point.



Definition 4. An indirect exit point of a system, s, is an

internal action, m, of s such that either 1) 9 a direct exit point,

m1, of s such that m:post ) m1:pre and 9 a data item, d,

such that d 2 Resðm:postÞ ^ d 2 Resðm1:preÞ (Figs. 7a and
7b), or 2) 9 an indirect exit point, m2, of s such that m:post)
m2:pre and 9 a data item, d, such that d 2 Resðm:postÞ ^ d 2
Resðm2:preÞ (Figs. 7c and 7d).

3.1.4 Channels

An attacker uses a system’s channels to connect to the
system and invoke the system’s methods. Hence, the
channels act as another basis for attacks on the system.
An entity in the environment can invoke a method, m, of a
system, s, by using s’s channel, c; hence, in our I/O
automata model, c appears in a direct entry point (or exit
point), m’s, precondition, i.e., c 2 Resðm:preÞ. In our model,
every channel must appear in at least one direct entry
point’s (or direct exit point’s) precondition. Similarly, at
least one channel must appear in every direct entry point’s
(or direct exit point’s) precondition.

3.1.5 Untrusted Data Items

An attacker can use persistent data items to send (receive)
data indirectly into (from) a system. Hence, the persistent
data items act as another basis of attacks on a system. The
data items which are visible to both a system, s, and U

across s’s different executions are s’s persistent data items.
Specific examples of persistent data items are files, cookies,
database records, and registry entries. The persistent data
items are shared between s and U . For example, s might
read a file after U writes to the file. An untrusted data item of
a system, s, is a persistent data item, d, such that a direct
entry point of s reads d from the data store or a direct exit
point of s writes d to the data store.

Definition 5. An untrusted data item of a system, s, is a

persistent data item, d, such that either 1) 9 a direct entry
point, m, of s such that d 2 Resðm:postÞ, or 2) 9 a direct exit

point, m, of s such that d 2 Resðm:preÞ.

3.1.6 Attack Surface Definition

A system’s attack surface is the subset of its resources that
an attacker can use to attack the system. An attacker can use
a system’s entry points and exit points, channels, and
untrusted data items to send (receive) data into (from) the
system to attack the system. Hence the set of entry points
and exit points, the set of channels, and the set of untrusted
data items are the relevant subset of resources that are part
of the attack surface.

Definition 6. Given a system, s, and its environment, Es, s’s
attack surface is the triple, hMEs; CEs ; IEsi, where MEs is s’s
set of entry points and exit points, CEs is s’s set of channels,
and IEs is s’s set of untrusted data items.

Notice that we define s’s entry points and exit points,
channels, and data items with respect to the given
environment Es. Hence s’s attack surface, hMEs; CEs ; IEsi,
is with respect to the environment Es. We compare the
attack surfaces of two similar systems (i.e., different
versions of the same software or different software that
provide similar functionality) along the methods, channels,
and data dimensions with respect to the same environment
to determine if one has a larger attack surface than another.

Definition 7. Given an environment, E ¼ hU; D; T i, and
systems, A and B, A’s attack surface, hME

A;C
E
A; I

E
A i, is larger

than B’s attack surface, hME
B;C

E
B; I

E
B i, i f f e i ther

1 ) ME
A �ME

B ^ CE
A � CE

B ^ IEA � IEB , o r 2 ) ME
A �

ME
B ^ CE

A � CE
B ^ IEA � IEB , or 3) ME

A �ME
B ^ CE

A �
CE
B ^ IEA � IEB .

We model s’s interactions with the entities present in its
environment as parallel composition, skEs. Notice that an
attacker can send data into s by invoking s’s input actions
and can receive data from s when s executes its output
actions. Since an attacker attacks a system by sending
(receiving) data into (from) the system, any schedule of
ðskEsÞ that contains s’s input actions or output actions is a
potential attack on s. We denote the set of potential attacks
on s as attacksðsÞ.
Definition 8. Given a system, s, and its environment,
Es ¼ hU; D, T i, a potential attack on s is a schedule, �,
of the composition, P ¼ s k U k D k ðkt2T tÞ, such that an
input action (or output action), m, of s appears in �.

We show that with respect to the same attacker and
operating environment, if a system, A, has a larger attack
surface than a similar system, B, then the number of
potential attacks on A is larger than B (we omit the proof
due to space limitations [10]). Since A and B are similar
systems, i.e., different versions of the same system (e.g.,
different versions of the Windows OS) or different systems
with similar functionality (e.g., different File Transfer
Protocol (FTP) servers), we assume that both A and B have
the same set of state variables and the same set of resources
except the ones appearing in the attack surfaces.

Theorem 1. Given an environment, E ¼ hU; D; T i, and
systems, A and B, if A’s attack surface, hME

A;C
E
A; I

E
A i, is

larger thanB’s attack surface, hME
B;C

E
B; I

E
B i, and the rest of the

resources ofA andB are equal, then attacksðAÞ � attacksðBÞ.

Theorem 1 has practical significance in the software
development process. The theorem shows that if we create a
newer version of a software system by only adding more
resources to an older version, then assuming all resources
are counted equally (see Section 3.2), the newer version has
a larger attack surface, and hence, a larger number of
potential attacks. Software developers should ideally strive
toward reducing the attack surface of their software from
one version to another, or if adding resources to the
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Fig. 7. Indirect exit point.



software (e.g., adding methods to an API), then do so
knowing that they are increasing the attack surface.

3.2 Damage Potential and Effort

Not all resources contribute equally to a system’s attack
surface measurement, because not all resources are equally
likely to be used by an attacker. A resource’s contribution to
a system’s attack surface depends on the resource’s damage
potential, i.e., the level of harm the attacker can cause to the
system in using the resource in an attack and the effort the
attacker spends to acquire the necessary access rights in
order to be able to use the resource in an attack. The higher
the damage potential or the lower the effort, the higher the
resource’s contribution to the attack surface. In this section,
we use our I/O automata model to formalize the notions of
damage potential and effort. We model a resource, r’s,
damage potential and effort as the state variables, r:dp and
r:ef , respectively.

In practice, we estimate a resource’s damage potential
and effort in terms of the resource’s attributes, e.g., method
privilege, access rights, channel protocol, and data item
type. Our estimation method is a specific instantiation of
our general measurement framework and includes only
technical impact (e.g., privilege elevation) and not business
impact (e.g., monetary loss) though our framework does not
preclude this generality. We do not make any assumptions
about the attacker’s capabilities or resources in estimating
damage potential or effort.

We estimate a method’s damage potential in terms of the
method’s privilege. An attacker gains a method’s privilege
by using the method in an attack. For example, the attacker
gains root privilege by exploiting a buffer overflow in a
method running as root. The attacker can cause damage to
the system after gaining root privilege. The attacker uses
channels to connect a system and send (receive) data to
(from) the system. A channel’s protocol imposes restrictions
on the data exchange allowed using the channel, e.g., a TCP
socket allows raw bytes to be exchanged whereas an RPC

endpoint does not. Hence we estimate a channel’s damage
potential in terms of its protocol. The attacker uses
persistent data items to send (receive) data indirectly into
(from) a system. A persistent data item’s type imposes
restrictions on the data exchange, e.g., a file can contain
executable code whereas a registry entry cannot. The
attacker can send executable code into the system by using a
file, but the attacker cannot do the same using a
registry entry. Hence we estimate a data item’s damage
potential in terms of the its type. The attacker can use a
resource in an attack if the attacker has the required access
rights. The attacker spends effort to acquire these access
rights. Hence for the three kinds of resources, i.e., method,
channel, and data, we estimate attacker effort in terms of the
resource’s access rights.

We assume that we have a total ordering, � , among the
six attributes’ values, i.e., method privilege and access
rights, channel protocol and access rights, and data item
type and access rights. In practice, we impose these total
orderings using our knowledge of a system and its
environment. For example, an attacker can cause more
damage to a system by using a method running with root

privilege than a method running with nonroot privilege;

hence root � nonroot. We use these total orderings to
compare the contributions of resources to the attack surface.
Abusing notation, we write r1 � r2 to express that a
resource, r1, makes a larger contribution than a resource, r2.

Definition 9. Given two resources, r1 and r2, r1 � r2 iff either
1) r1:dp � r2:dp ^ r2:ef � r1:ef , or 2) r1:dp ¼ r2:dp ^
r2:ef � r1:ef , or 3) r1:dp � r2:dp ^ r2:ef ¼ r1:ef .

Definition 10. Given two resources, r1 and r2, r1 � r2 iff either
1) r1 � r2 or 2) r1:dp ¼ r2:dp ^ r2:ef ¼ r1:ef .

3.2.1 Modeling Damage Potential and Effort

In our I/O automata model, we use an action’s pre and
postconditions to formalize effort and damage potential,
respectively. Intuitively, the effort corresponds to the
preconditions the attacker needs to satisfy to invoke an action
and the damage potential corresponds to the action invoca-
tion’s damaging effect stated in the action’s postcondition.
We present a parametric definition of an action, m, of a
system, s, below. For readability, we show this definition for
when the entities in the environment connect to s using only
one channel, c, to invokem andm either reads or writes only
one data item, d. The generalization to a vector of channels
and a vector of data items is straightforward.

mðMA;CA;DA;MB;CB;DBÞ
pre : Ppre ^ MA � m:ef ^ CA � c:ef ^ DA � d:ef
post : Ppost ^ MB � m:dp ^ CB � c:dp ^ DB � d:dp:

The parameters MA, CA, and DA represent the highest
method access rights, channel access rights, and data access
rights acquired by an attacker so far, respectively. Similarly,
MB, CB, and DB represent the benefit to the attacker in
using m, c, and d in an attack, respectively. Ppre is the part of
m’s precondition that does not involve access rights. The
clause, MA � m:ef , captures the condition that the attacker
has the required access rights to invoke m; the other two
clauses in the precondition are analogous. Similarly, Ppost is
the part of m’s postcondition that does not involve benefit.
The clause, MB � m:dp, captures the condition that the
attacker gets the expected benefit after the execution of m;
the rest of the clauses are analogous.

3.2.2 Attack Surface Measurement

Given two systems, A and B, if A has a larger attack surface
than B (Definition 7), then everything else being equal, it is
easy to see that A has a larger attack surface measurement
than B. It is also possible that even though A and B both
have the same attack surface, if a resource, A:r, belonging to
A’s attack surface makes a larger contribution than the
same-named resource, B:r, belonging to B’s attack surface,
then everything else being equal A has a larger attack
surface measurement than B.

Given a system, A, and its attack surface, hME
A ;C

E
A; I

E
A i,

we denote the set of resources belonging to A’s attack
surface as RA ¼ME

A [ CE
A [ IEA . Note that from Definition 7,

if A has a larger attack surface than B, then RA � RB.

Definition 11. Given an environment, E ¼ hU; D; T i,
systems, A and B, A’s attack surface, hME

A;C
E
A; I

E
A i, and
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B’s attack surface, hME
B;C

E
B; I

E
B i, A has a larger attack surface

measurement than B iff either

1. A has a larger attack surface than B (i.e., RA � RB)
and 8r 2 RB: A:r � B:r, or

2. ME
A ¼ME

B ^ CE
A ¼ CE

B ^ IEA ¼ IEB (i.e., RA ¼ RB)
and there is a nonempty set, RAB � RB, of resources
such that 8r 2 RAB: A:r � B:r and 8r 2 ðRBn
RABÞ: A:r ¼ B:r.

We show that with respect to the same attacker and
operating environment, if a system, A, has a larger attack
surface measurement than a system, B, then the number of
potential attacks on A is larger than B (we omit the proof
due to space limitations [10]).

Theorem 2. Given an environment, E ¼ hU; D; T i, systems
A and B, A’s attack surface, hME

A;C
E
A ; I

E
A i, and B’s attack

surface, hME
B;C

E
B ; I

E
B i, if A has a larger attack surface

measurement than B, then attacksðAÞ � attacksðBÞ.

Theorem 2 also has practical significance in the software
development process. The theorem shows that if software
developers increase a resource’s damage potential and/or
decrease the resource’s effort in their software’s newer
version, then all else being equal, the newer version’s attack
surface measurement becomes larger and the number of
potential attacks on the software increases.

3.3 A Quantitative Metric

The qualitative attack surface measurement introduced in
Definition 11 is useful to determine if one system has a
larger attack surface measurement than another. We,
however, need a quantitative measure to determine the
difference in the measurements. In this section, we
introduce a quantitative attack surface measurement in
terms of the resources’ damage potential-effort ratios.

3.3.1 Damage Potential-Effort Ratio

We considered damage potential and effort in isolation
while estimating a resource’s contribution to the attack
surface. From an attacker’s point of view, however, damage
potential and effort are related; if the attacker gains higher
privilege by using a method in an attack, then the attacker
also gains the access rights of a larger set of methods. For
example, the attacker can access only the methods with
authenticated user access rights by gaining authen-

ticated privilege, whereas the attacker can access
methods with authenticated user and root access
rights by gaining root privilege. The attacker might be
willing to spend more effort to gain a higher privilege level,
which then enables the attacker to cause damage as well as
gain more access rights. Hence we consider damage
potential and effort in tandem and quantify a resource’s
contribution as a damage potential-effort ratio. The ratio is
similar to a cost-benefit ratio; the damage potential is the
benefit to the attacker in using a resource in an attack and
the effort is the cost to the attacker in using the resource.

In our I/O automata model, a method, m’s, damage
potential determines the potential number of methods that
m can call and hence the potential number of methods that
can follow m in a schedule; the higher the damage potential,

the larger the number of methods. Similarly, m’s effort
determines the potential number of methods that can call m
and hence, the potential number of methods that m can
follow in a schedule; the lower the effort, the larger the
number of methods. Hence m’s damage potential-effort
ratio dermðmÞ determines the potential number of schedules
in which m can appear. Given two methods, m1 and m2, if
dermðm1Þ > dermðm2Þ, then m1 can potentially appear in
more schedules (and hence, more potential attacks) than
m2. Similarly, if a channel, c (or a data item, d), appears in a
method m’s precondition, then c’s damage potential-effort
ratio (or d’s) determines the potential number of schedules
in which m can appear. Hence, we estimate a resource’s
contribution to the attack surface as the resource’s damage
potential-effort ratio.

We assume a function, derm : method! QQ, that maps
each method to its damage potential-effort ratio belonging
to the set QQ of rational numbers. Similarly, we assume a
function, derc : channel! QQ for the channels and a func-
tion, derd : data item! QQ for the data items. In practice,
however, we compute a resource’s damage potential-effort
ratio by assigning numeric values to the resource’s
attributes. We discuss a specific numeric value assignment
method in Section 4.2.

3.3.2 Quantitative Attack Surface Measurement Method

We quantify a system’s attack surface measurement along
three dimensions: methods, channels, and data.

Definition 12. Given a system, s’s, attack surface,
hMEs; CEs ; IEsi, s’s attack surface measurement is the triple
h
P

m2MEs dermðmÞ;
P

c2CEs dercðcÞ;
P

d2IEs derdðdÞi.

Our attack surface measurement method is analogous to
the risk estimation method used in risk modeling [11]. s’s
attack surface measurement is an indication of s’s risk from
attacks on s. In risk modeling, the risk associated with a
set E of events is

P
e2E pðeÞCðeÞ, where an event, e’s,

occurrence probability is pðeÞ and consequence is CðeÞ. The
events in risk modeling are analogous to the resources in
our measurement method. An event’s occurrence prob-
ability is analogous to the probability of a successful
attack using a resource. For example, a buffer overrun
attack using a method, m, will be successful only if m has
an exploitable buffer overrun vulnerability. Hence, the
probability, pðmÞ, associated with m is the probability that
m has an exploitable vulnerability. Similarly, the prob-
ability, pðcÞ, associated with a channel, c, is the prob-
ability that the method that receives (or sends) data from
(to) c has an exploitable vulnerability and the probability,
pðdÞ, associated with a data item, d, is the probability that
the method that reads or writes d has an exploitable
vulnerability. An event’s consequence is analogous to a
resource’s damage potential-effort ratio. The pay-off to
the attacker in using a resource in an attack is propor-
tional to the resource’s damage potential-effort ratio;
hence the damage potential-effort ratio is the consequence
of a resource being used in an attack. The risk along s’s
three dimensions is the triple, h

P
m2MEs pðmÞdermðmÞ;P

c2CEs pðcÞdercðcÞ;
P

d 2 IEs pðdÞderdðdÞi, which is also s’s
attack surface measurement.
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In practice, however, predicting defects in software [12]
and estimating the likelihood of vulnerabilities in software
are difficult tasks [13]. Hence we take a conservative
approach in our measurement method and assume that
pðmÞ ¼ 1 for all methods, i.e., every method has an
exploitable vulnerability; even if a method does not have a
known vulnerability now, it might have a future vulner-
ability not discovered so far. We similarly assume that pðcÞ ¼
1 for all channels and pðdÞ ¼ 1 for all data items. With our
conservative approach, s’s attack surface measurement is
h
P

m2MEs dermðmÞ;
P

c2CEs dercðcÞ;
P

d 2 IEs derdðdÞi.

4 EMPIRICAL ATTACK SURFACE MEASUREMENTS

In this section, we instantiate the previous section’s abstract
measurement method for systems implemented in the C

programming language; Fig. 8 shows the steps in the
instantiated method. The dotted box shows the step done
manually and the solid boxes show the steps done
programmatically. The two dotted arrows represent manual
inputs required for measuring the attack surface. We
automated as many steps as possible in our measurement
method and minimized the number of manual inputs
required by the method.

The empirical application of our method focuses only on
direct entry and exit points since, unlike for indirect ones,
we can automatically identify direct ones using source code
analysis tools. Developing automated tools to identify
indirect entry and exit points whose use would then afford
a more complete attack surface measurement is left for
future work.

We illustrate the method by describing the measurement
process of two popular open source IMAP servers: Courier-
IMAP 4.0.1 and Cyrus 2.2.10. We also measured the attack
surfaces of two FTP daemons: ProFTPD 1.2.10 and Wu-FTPD
2.6.2; we omit the results due to space limitations [10]. We
chose the IMAP servers due to their popularity and
measured the attack surfaces of the IMAP daemons in both
codebases to obtain a fair comparison.

4.1 Identification of Entry Points and Exit Points,
Channels, and Untrusted Data Items

A system’s direct entry point (exit point) is a method that
receives (sends) data from (to) the environment. As proposed
by DaCosta et al., we assume that a method can receive
(send) data from (to) the environment by invoking specific C
library methods, e.g., the read method defined in
unistd.h [14]; we identify a set Input (Output) of relevant

C library methods. A method is a direct entry point (exit
point) if it contains a call to a method in Input (Output).
Hence we automatically construct a call graph from a
system’s source code and identify all methods that contain
calls to methods in Input (Output) as direct entry points (exit
points).

On a UNIX system, a process changes its privilege
through a set of uid-setting system calls such as setuid

[15]. Hence we determine entry (exit) points’ privileges by
locating uid-setting system calls in the code base. For
example, if a process starts with root privilege and then
drops privilege by calling setuid, then we assume all
methods invoked before setuid to have root privilege
and all methods invoked after setuid to have nonroot

privilege. Similarly, we identify entry points’ access rights
from the code location where authentication is performed.
We assume that any method that is invoked before user
authentication takes place has unauthenticated access rights
and any method that is invoked after successful authentica-
tion has authenticated access rights.

We generated call graphs for both daemons using cflow
[16]. If a method ran with multiple privileges or was
accessible with multiple access rights levels during different
executions, then we counted the method multiple times. We
show the direct entry points (DEP) and direct exit points
(DExP) in Table 1; please note that all methods in the Cyrus
codebase run with a special UNIX user,cyrus, and privilege.

We observed the run time behavior of both daemons’
default installations to identify the daemons’ channels,
untrusted data items, and their relevant attributes. We show
the daemons’ channels in Table 2 and untrusted data items
in Table 3.

4.2 Estimation of Damage Potential-Effort Ratio

We assign numeric values to the six attributes introduced in
Section 3.2 to estimate numeric damage potential-effort
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ratios. We impose a total order among the values of the
attributes and assign numeric values according to the total
order. For example, we assume a method running as root
has a higher damage potential than a method running as
authenticated user; hence, root > authenticated

user in the total ordering and we assign a higher number to
root than authenticated user. The exact choice of the
numeric values is subjective and depends on a system and
its environment. Hence we cannot automate the process of
numeric value assignment. We, however, provide guide-
lines to our users for numeric value assignment using
parameter sensitivity analysis.

In our parameter sensitivity analysis, we studied the
effects of changing the difference in the numeric values
assigned to the attributes on our measurements. Numeric
values should be chosen such that both the privilege values
and the access rights values affect the attack surface
measurements comparison’s outcome. Our analysis shows
that if both systems have comparable numbers of entry
points and exit points, then the access rights values do not
affect the measurements if the privilege difference is low or
high. Similarly, if one system has a significantly larger
number of entry points and exit points than the other, then
no choice of the privilege difference or the access rights
difference affects the measurement. Please see Section 4.5 of
[10] for further details on the parameter sensitivity analysis.

In the case of the IMAP daemons, we assigned numeric
values based on our knowledge of the IMAP servers and
UNIX security (Table 4). Please note a few special orderings
among the attributes: A method running with cyrus

privilege in the Cyrus daemon has access to every user’s
email files; hence, we assumed a method running as cyrus
has higher damage potential than a method running as
authenticated user. Similarly, admin and cyrus are
special users in Cyrus; hence, we assumed the attacker
spends greater effort to acquire admin and cyrus access
rights compared to authenticated access rights. We also
assumed that each channel has the same damage potential.

4.3 Attack Surface Measurements and Their Usage

We estimated the methods’ total contribution, the channels’
total contribution, and the data items’ total contribution to
both IMAP daemon’s attack surfaces. For example, from
Table 1 and Table 4, Courier’s methods contribute ð45 �
ð51Þ þ 31� ð53Þ þ 141� ð33ÞÞ ¼ 417:67. From similar computa-
tions, Courier’s attack surface measurement is h417:67;
2:25; 72:13i and Cyrus’s attack surface measurement is
h343:00; 3:25; 66:50i.

The attack surface metric tells us that the Cyrus daemon
presents less security risk along the methods and data
dimensions, whereas the Courier daemon presents less
security risk along the channels dimension. Keeping the
measurement separated along three different dimensions
offers a design choice to our users, e.g., system adminis-
trators can choose a dimension appropriate for their need.
In order to choose one daemon over another, we first
determine the dimension that presents more risk using our
knowledge of the daemons and the operating environment;
we then make a choice using the measurements along that
dimension. For example, if we were concerned about
privilege elevation on the host running the IMAP daemon,
then the methods dimension presents more risk and the
attack surface metric suggests that we would choose the
Cyrus daemon over the Courier daemon. Similarly, if
we were concerned about the number of open channels
on the host running the IMAP daemon, then the channels
dimension presents more risk and we would choose the
Courier daemon. If we were concerned about the safety of
email files, then the data dimension presents more risk and
we would choose the Cyrus daemon.

5 EMPIRICAL STUDIES FOR VALIDATION

A key challenge in security metrics research is the
validation of a metric. Validating a software attribute’s
measure is hard [17], [18], [19]; security is an attribute that is
hard to measure and hence even harder to validate. To
validate our metric, we conducted three exploratory
empirical studies inspired by the research community’s
software metrics validation approaches [20], [21].

In practice, validation approaches distinguish measures
from prediction systems; measures numerically characterize
software attributes whereas prediction systems predict
software attributes’ values. For example, lines of code
(LOC) is a measure of software “length”; LOC becomes a
prediction system if we use LOC to predict software
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“complexity.” We validate a measure by showing its
correctness in numerically characterizing an attribute and
a prediction system by showing its accuracy. Our attack
surface metric plays a dual role: It measures a software
attribute, i.e., the attack surface, and is also a prediction
system to indicate software’s security risk. Hence we took a
two-fold validation approach. First, we validated the
measure by validating our measurement method using
two empirical studies: a statistical analysis of data collected
from Microsoft Security Bulletins (Section 5.1) and an expert
user survey for Linux (Section 5.2). Our approach is
motivated by the notion of convergent evidence in Psychology
[22]; since each study has its own strengths and weaknesses,
the convergence in the studies’ findings enhances our belief
that the findings are valid and not methodological artifacts.

Second, we validated our metric’s prediction system by
validating attack surface measurements. In Section 3, we
formally showed that a larger attack surface leads to a
larger number of potential attacks on software. We
established a relationship between attack surface measure-
ments and security risk by analyzing vulnerability patches
in open source software (Section 5.3). We also gathered
anecdotal evidence from software industry to show that
attack surface reduction mitigates security risk (Section 5.4).

Liu and Traore introduce a theoretical validation frame-
work, based on established security design principles, to
validate security metrics [23]. They demonstrate that our
metric is valid in their framework; their theoretical
validation complements our empirical studies.

5.1 Statistical Analysis of Microsoft Security
Bulletins (MSB)

Our measurement method is based on the following three
key hypotheses; hence we validated the hypotheses to
validate the method.

1. Methods, channels, and data are the attack surface’s
dimensions.

2. The six resource attributes (method privilege and
access rights, channel protocol and access rights, and
data item type and access rights) are indicators of
damage potential and effort.

3. A resource’s damage potential-effort ratio is an
indicator of the resource’s likelihood of being used
in attacks.

5.1.1 MSBs

An MSB describes an exploitable vulnerability present in
Microsoft software [24]. We collected data from 110 bulletins,
published over a period of two years, by manually
interpreting the bulletins’ descriptions; hence the process is
subject to human error. We identified the resources
(methods, channels, and data items) that the attacker has to
use to exploit the vulnerabilities described in the bulletins,
the resources’ attributes that are indicators of damage
potential and effort, and the bulletins’ severity ratings. Many
bulletins contained multiple vulnerabilities; hence the
110 bulletins resulted in 202 observations.

5.1.2 Hypothesis 1

Out of the 202 observations, 202 mention methods, 170
mention channels, and 108 mention data items as the
resources used in exploiting the vulnerabilities. These

findings suggest that methods, channels, and data items
are used in attacks on software and hence are the attack
surface’s dimensions. We, however, cannot rule out other
dimensions, even though we did not find any other
resource types mentioned in the bulletins.

5.1.3 Hypothesis 2

A bulletin’s severity rating depends on Microsoft’s assess-
ment of the impact of exploiting the vulnerability described
in the bulletin and the exploitation’s difficulty. The higher
the impact and the lower the difficulty, the higher the
rating. The exploitation’s impact and difficulty are equiva-
lent to damage potential and attacker effort in our
measurement method, respectively. Hence we expect the
severity rating to depend on the six attributes that are
indicators of damage potential and attacker effort; we also
expect the severity rating to increase with an increase in the
value of an attribute that is an indicator of damage
potential, e.g., method privilege, and to decrease with an
increase in the value of an attribute that is an indicator of
attacker effort, e.g., method access rights. In other words,
we expect an indicator of damage potential (effort) to be a
significant predictor of the severity rating and to be
positively (negatively) correlated with the severity rating.

We used ordered logistic regression to test for the
attributes’ significance as logistic regression uses maximum
likelihood estimates to compute the regression coefficients. A
positive coefficient indicates a positive correlation between
an attribute and the severity rating, and a negative coefficient
indicates a negative correlation. We used z-tests to determine
the coefficients’ statistical significance (p-value < 0:05); our
null hypothesis was that the coefficients are zero and hence
the attributes are not significant predictors of the severity
rating.

Following the process described in Section 4.2, we
assigned numeric values to the six attributes and the severity
rating to generate a data set for performing ordered logistic
regression. We imposed total orderings among the method
privileges, method access rights, channel access rights, data
item access rights, and the severity ratings, and we assigned
numeric values according to the total ordering and on an
ordinal scale. We, however, could not impose total orderings
among channel protocols and file formats. Hence, we
assigned numeric values on a nominal scale. Since nominal
values are not ordered, we could not determine a positive or
negative correlation with severity rating.

Tables 5 and 6 show our results that suggest that the six
attributes are indicators of damage potential and effort. A
method’s privilege (Table 5, row 3), a method’s access rights
(Table 5, row 4), a channel’s access rights (Table 5, row 9),
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and a data item’s access rights (Table 6, row 8) are
significant predictors of the severity rating and exhibit
expected correlation with the severity rating. Table 5 shows
that SMTP and TCP are significant and pipe is insignificant
in explaining the severity rating. Since two of the three
protocols are significant, the finding suggests that channel
protocol is a significant predictor of the severity rating.
Similarly, Table 6 shows that data item type is a significant
predictor of the severity rating.

5.1.4 Hypothesis 3

The bulletins did not have any data relevant to a resource’s
likelihood of being used in attacks. Henc, we could not use
the MSBs to validate Hypothesis 3. We used an expert
survey described in Section 5.2 to validate Hypothesis 3.

5.2 Expert User Survey

Statistical survey is a widely used technique in social
sciences [25], [26] and is also used for empirical validation
in software engineering research [27], [28], [29]. We
conducted an expert user survey for two reasons: First,
we wanted to find out potential users’ perception of our
metric. Second, our MSB analysis was with respect to
Windows; we conducted the survey with respect to Linux.

5.2.1 Subjects and Questionnaire

Software developers and software consumers are our
metric’s two potential user groups. We collaborated with
software developers and got their feedback on improving
the metric; we discuss the collaboration in Section 6. System
administrators are examples of software consumers; hence
we conducted an e-mail survey of expert Linux adminis-
trators to know their perception of the metric. We identified
20 experienced system administrators working in univer-
sities, corporations, and government agencies as our
survey’s subjects.

The survey questionnaire consisted of six explanatory
questions designed to measure the subjects’ attitude about
our measurement method’s steps. The first five questions
asked the subjects to indicate their degree of agreement or
disagreement with the steps. We used the last question to
collect information about the subjects to avoid self-selection
bias, i.e., the subjects incorrectly consider themselves expert
system administrators without relevant experience or
expertise. The subjects indicated their attitude on a five-
point Likert scale: strongly agree, agree, neither agree nor
disagree, disagree, and strongly disagree [30]. The Likert
scale’s bipolar scaling nature allows us to measure both
positive and negative responses. We conducted six rounds
of pretesting and post-test interviews to identify and
remove leading questions, ambiguous terms, and overall
confusing questions from the questionnaire.

5.2.2 Results

We combined the “strongly agree” and the “agree”
responses to an “agree (strongly or otherwise)” category
and the “strongly disagree” and the “disagree” responses to
a “disagree (strongly or otherwise)” category to avoid
central tendency bias, i.e., subjects may avoid using extreme
response categories such as “strongly agree.” We then
computed the proportion of the subjects who agree with,
disagree with, and are neutral with our method’s steps. We
performed t-tests to determine the survey responses’
statistical significance (p-value < 0:05); we used the null
hypothesis that the mean of a survey question’s Likert scale
responses is “neutral.”

A majority of the subjects agreed with our choice of the
attack surface’s three dimensions (Table 7) and our notion
of the damage potential-effort ratio as an indicator of a
resource’s likelihood of being used in attacks (Table 7). A
majority of the users also agreed with our choice of method
privilege and the three access rights as indicators of damage
potential and effort; the findings with respect to channel
protocol and data item type are not statistically significant
and hence not conclusive (Table 8).

The subjects who disagreed with our choice were of the
opinion that a channel’s (data item’s) damage potential
depends on the methods that process the data received from
the channel (data item); hence they concluded that a TCP

socket and an RPC end point are equally attractive to an
attacker, irrespective of their protocol. These findings
suggest that we should assign the same damage potential,
i.e., 1, to all channels and data items. In that case, we do not
have to perform the difficult step of assigning total orderings
among the channel protocols and the data item types.

5.3 Open Source Patch Analysis

We validated our metric’s prediction system by establishing
a positive correlation between attack surface measurements
and software’s security risk. A vulnerability patch reduces a
system’s security risk by removing an exploitable vulner-
ability from the system; hence we expect the patch to reduce
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the system’s attack surface measurement. We demonstrated
that a majority of patches in open source software reduce
the attack surface measurement.

5.3.1 Identification of Relevant Patches

Not all patches are relevant to the measurement. A patch is
relevant if we expect the patch to remove a vulnerability by
modifying the number of resources that are part of the
attack surface or by modifying such resources’ damage
potential-effort ratios. For example, we expect a patch that
resolves authentication issues to affect the resources’ access
rights; hence the patch is relevant. We, however, do not
always expect the patches for buffer overruns to affect the
attack surface measurement.

We used the National Vulnerability Database (NVD)
bulletins to decide whether a patch is relevant [31]. The
NVD is the US government repository of software vulner-
ability data. Each bulletin describes a vulnerability and
contains a vulnerability type assigned, using the Common
Weakness Enumeration (CWE) developed at MITRE [32].
The CWE definitions provide information on how to find
vulnerabilities in software and how to deal with discovered
vulnerabilities. Hence we use a vulnerability’s type to
decide whether we expect the vulnerability’s patch to make
the changes mentioned in the previous paragraph, and
hence, whether the patch is relevant to the measurement.
We identify the following seven types to be relevant:
Authentication Issues; Permissions, Privileges, and Access
Control; Cross-Site Scripting (XSS); Format String Vulner-
ability; SQL Injection; OS Command Injection; and In-
formation Disclosure.

Not all relevant patches, however, reduce the attack
surface measurement. If a vulnerability has one of the first
two types, we always expect the vulnerability’s patch to
reduce the measurement. The vulnerabilities belonging to
the last five types can be patched in different ways; hence
the patches may not always reduce the measurement.

5.3.2 Results and Discussion

We analyzed the source code for Firefox and ProFTP
vulnerability patches to quantify the change in attack
surface measurements. Our results indicate that 67 percent
and 70 percent of the relevant patches reduced the attack
surfaces of Firefox and the ProFTP server, respectively
(confidence level ¼ 95%, p < 0:05).

Firefox Results: We analyzed all of the patches released by
the Mozilla Foundation for Firefox versions 2.0.0.1 to 2.0.0.8.
Mozilla Foundation Security Advisories published 48 C/C++
vulnerabilities with publicly available patch source codes.
Many of the 48 NVD bulletins for the 48 vulnerabilities
have no type information. We obtained a data set from
MITRE that complements the NVD bulletins’ type
information [33]. This data set, however, was incomplete;
hence we inferred the types from the bulletins’ descriptions.
We identified 12 out of the 48 patches to be relevant to
Firefox’s attack surface measurement; eight of these patches
reduced the measurement and four did not change the
measurement. Three out of the four patches that did not
reduce the measurement are patches of three XSS vulner-
abilities. We do not expect XSS vulnerability patches to
always reduce the attack surface measurement.

ProFTP Results: The ProFTPD project group does not
publish any security advisories; hence we searched the

NVD to identify 21 ProFTP vulnerabilities with publicly
available patch source codes. We inferred the types of
vulnerabilities that had missing type information. We
identified 10 out of the 21 patches to be relevant to ProFTP’s
attack surface measurement; seven of these patches reduced
the measurement and three format string vulnerability
patches did not change the measurement. We do not expect
format string vulnerability patches to always reduce the
attack surface measurement.

Patches that have a Type Assigned: The missing type
inference process is subject to human error. Hence, we
repeated our experiment by analyzing only those patches that
have a type assigned in the NVD. Our results show that
76.9 percent of the relevant patches reduced the attack surface
measurement (confidence level ¼ 95%, p < 0:05).

The NVD contains 25,000 bulletins; only 363 bulletins,
however, have a vulnerability type and contain one or more
hyperlinks to their patches. We identified 73 C/C++

vulnerability bulletins out of the 363 to be relevant to the
attack surface measurement based on their type. We could,
however, obtain source code of only 13 patches; in the case of
the remaining 60 bulletins, the hyperlinks labeled as patch
information point to downloadable patches in binary format
(e.g., patches of commercial software). Ten out of these
13 patches reduced the attack surface measurement. One was
a format string vulnerability patch and two patches used
cryptographic techniques to remove vulnerabilities; hence
the three patches did not reduce the measurement.

5.4 Anecdotal Evidence

Anecdotal evidence from industry demonstrates that redu-
cing the attack surface mitigates software security risk. The
Sasser worm exploited a buffer overflow vulnerability
present in an RPC interface of Windows. The interface
was remotely accessible by anyone in Windows 2000 and
Windows XP, but was made to be accessible by only local
administrators in Windows Server 2003 to reduce the attack
surface. The worm could easily spread to Windows 2000
and Windows XP, but not to Windows Server 2003 because
of the entry point’s higher access rights and hence did not
affect Window Server 2003 [34]. Similarly, the Zotob worm
and the Nachi worm did not affect some versions of
Windows due to reduction in their attack surfaces.

Microsoft uses Kill-Bits to block vulnerable ActiveX

controls and COM objects from being hosted in browsers
and other scriptable environments [35]. Kill-Bits reduce the
browser’s attack surface by reducing the amount of running
code and make the browser immune to the vulnerabilities
present in ActiveX controls and COM objects.

Both Firefox 2.0 and Firefox 1.5 contained a buffer
overflow vulnerability in the SSL 2 protocol implementa-
tion. SSL 2 protocol was turned off in Firefox 2.0’s default
configuration to reduce the attack surface [36]. Hence
Firefox 2.0’s default configuration was immune to attacks
that exploit the vulnerability, whereas Firefox 1.5 was not.

6 MEASUREMENT METHOD FOR SAP SOFTWARE

SYSTEMS

We collaborated with SAP, the world’s largest enterprise
software company, to apply our method to SAP’s enter-
prise-scale software implemented in Java [37]. Our
motivation behind the collaboration was three-fold. First,
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we wanted to demonstrate that our method scales to
enterprise-scale software and is agnostic to implementation
language. Second, we wanted to get SAP developers and
architects’ feedback on improving our measurement pro-
cess. Third, we wanted to identify uses of attack surface
measurements in multiple phases of the software develop-
ment process (Section 6.4).

6.1 Implementation of a Measurement Tool

We applied our method to a core component of the SAP
NetWeaver platform. The component opens only one TCP

channel and uses no persistent data items. Hence we
measured the attack surface along the method dimension.
We implemented a measurement tool as an Eclipse

plugin so that SAP’s software developers can use the tool
inside their software development environment (Fig. 9) [38].

Similar to C, we identify a system’s entry points and exit
points from the system’s call graph. A method, m, of a
system, s, implemented in Java is a direct entry point if
either 1) m is in a public interface of s and receives data
items as input, or 2) m invokes interface methods of a
system, s0, and receives data items as result, or 3) m invokes
a Java I/O library method. Similarly, a method, m, is a
direct exit point if either 1) m is in a public interface of s and
sends data items as result, or 2) m invokes interface
methods of a system, s0, and sends data items as input, or
3) m invokes a Java I/O library method.

We use two different techniques to generate the call
graph to provide a precision-scalability tradeoff to the
software developers: the TACLE Eclipse plugin developed
at Ohio State University, which gives a very precise call
graph, but does not scale well to large programs [39], and
an Eclipse API, which gives a less precise call graph, but
scales [40]. The two approaches are complementary: Soft-
ware developers can use the Eclipse API approach to
identify a system’s components that are large contributors
to the attack surface and then use the TACLE approach on
the relevant components to reduce the attack surface.

6.2 Estimation of the Damage Potential-Effort Ratio

The NetWeaver platform’s entire codebase runs with only
one privilege level. Hence we do not use method privilege to

estimate damage potential as we cannot make meaningful
suggestions to reduce the attack surface. Instead, we use a
method’s sources of input data (destinations of output data):
an input parameter, the data store, and other systems present
in the environment. Different attacks require different
sources of input; for example, a method receives data from
input parameters in SQL injection attacks and from the data
store in File Existence Check attacks. We correlated the three
sources of input with possible attacks identified by SAP’s
internal threat modeling process. For each source, we
computed the average severity rating of the attacks that
require the source. We assigned numeric values in propor-
tion to the average severity ratings and based on the
recommendation of our prior parameter sensitivity analysis
(Table 9).

Similar to systems implemented in C, we use a method’s
access rights to estimate the attacker effort. The NetWeaver
platform’s public interfaces are accessible to all entities and
internal interfaces are accessible only to other NetWeaver
components. Hence we identified two access rights levels:
public for public interface methods and internal for
internal interface methods. We assigned the following
numeric values based on our parameter sensitivity analysis’
recommendation: public = 1 and internal = 18.

We use the numeric values to compute the numeric
damage potential-effort ratios. For example, consider an
entry point, m, of a system, s. Suppose m is a public
interface method, takes two input parameters, invokes three
interfaces methods of another system, and is accessible with
the internal access rights level. Then m’s damage
potential is 2� 35þ 3� 1 ¼ 73 and its damage potential-
effort ratio is 73=18 ¼ 4:05.

6.3 Results and Discussion

We measured the attack surfaces of a NetWeaver service’s
three versions: S1, S2, and S3. The service is a core building
block of NetWeaver and is used by most SAP customers. We
show the service’s entry points and exit points in Table 10
and the measurements in Table 11.

The relative ordering among the service’s three measure-
ments conforms to the expected ordering. The S2 version is
backward compatible with S1 for customer expectation.
Moreover, S2 added new features to S, resulting in an
increase in the attack surface measurement. The S3 version

MANADHATA AND WING: AN ATTACK SURFACE METRIC 383

Fig. 9. Attack surface measurement tool implemented as an Eclipse
plugin.

TABLE 9
Numeric Values Assigned to the Sources of Input

TABLE 10
Entry Points and Exit Points



converted a public interface of S2 to an internal interface to
mitigate security risk and also added new features to S2. If
no new features had been added, S3’s measurement would
have been less than S2; the increase in S3’s measurement is
due to new features. The results show that the addition of
new features can increase the attack surface measurement.
Software developers should, however, aim to minimize the
increment. The design decision by SAP developers to
introduce internal interfaces was good in that it reduced
the overall increase in the measurement.

6.4 Lessons Learned

The measurement results show that our measurement
approach is feasible for SAP’s complex systems. We also
received positive feedback from SAP’s developers on the
usefulness of the measurement process. They could perform
incremental measurements and what-if analysis using our
tool. For example, they can easily determine the change in
attack surface due to the addition of new features. While
reducing the attack surface, they can measure the effects of
removing different features; they can also focus on the top
contributing methods instead of considering the entire
codebase. The tool enables the developers to make informed
decisions.

We also learned important lessons on improving our
measurement process. For example, our tool guides the
developers to focus on a system’s relevant parts to reduce the
attack surface; the tool, however, does not help in deciding
when to stop the reduction process. A possible direction of
future work to address this issue is to develop a method to
estimate a system’s minimum and maximum possible attack
surface measurement given the system’s functionality.

We also identified several uses of attack surface
measurements in the software development process. Attack
surface measurements are useful in the design and
development phase in an obvious manner, i.e., to reduce
risk by reducing the attack surface. We envision four other
uses of the measurements. First, in the testing phase,
software developers can use the measurements to prioritize
the software testing effort. For example, if a system’s
measurement is high, then they should invest more in
testing to identify and remove vulnerabilities; if the
measurement is low, they can reduce their effort.

Second, software developers often use manual code
inspection to find defects and vulnerabilities in their
software [41]. They can use the measurements to prioritize
the inspection process, e.g., if a system’s measurement is
high, then they should spend more resources inspecting the
system’s code.

Third, in the deployment phase, software consumers can
use the measurements to guide their choice of software
configuration. Choosing a suitable configuration, especially
for complex enterprise-scale software, is a nontrivial and
error-prone task. A system’s attack surface measurement is

dependent on the system’s configuration. Hence, assuming
that vendors provide attack surface measurements for
different configurations of their software, software con-
sumers would choose a configuration that results in a
smaller attack surface.

Fourth, in the maintenance phase, software developers
can use the measurements as a guide while implementing
vulnerability patches. A good patch should not only remove
a system’s vulnerability, but also should not increase the
system’s attack surface.

7 RELATED WORK

Our work differs from prior works on quantitative assess-
ment of software security in three key respects. First, our
attack surface measurement is based on a system’s inherent
properties and is independent of the system’s vulnerabil-
ities. Previous work assumes the knowledge of a system’s
vulnerabilities [42], [43], [44], [45], [46], [47]. In contrast, our
identification of all entry points and exit points encom-
passes all known vulnerabilities as well as potential
vulnerabilities not yet discovered or exploited. Moreover,
a system’s attack surface measurement indicates the
security risk of the exploitation of the system’s vulnerabil-
ities; hence our metric is complementary to and can be used
in conjunction with previous work.

Second, prior research on security measurement has taken
an attacker-centric approach [44], [45], [46], [47]. In contrast, we
take a system-centric approach. The attacker-centric approach
makes assumptions about attacker capabilities and re-
sources, whereas the system-centric approach assesses
security without reference to or assumptions about attacker
capabilities [48]. Our attack surface measurement is based on
a system’s design and is independent of the attacker’s
capabilities and behavior; hence our metric can be used as a
tool in the software design and development process.

Third, much prior work on quantification of security are
conceptual in nature and have not been applied to real
software systems [42], [47], [49], [50], [51]. In contrast, we
applied our method to real systems such as FTP servers,
IMAP servers, and an SAP software system.

Alves-Foss et al. use the System Vulnerability Index (SVI)
—obtained by evaluating factors such as system character-
istics, potentially neglectful acts, and potentially malevolent
acts—as a measure of a system’s vulnerability [42]. They,
however, identify only the relevant factors of operating
systems; their focus is on operating systems and not
individual or generic software applications. Moreover, they
assume that they can quantify all of the factors that
determine a system’s SVI. In contrast, we assume that we
can quantify a resource’s damage potential and effort.

Littlewood et al. explore the use of probabilistic methods
used in traditional reliability analysis in assessing the
operational security of a system [49]. In their conceptual
framework, they propose using the effort made by an
attacker to breach a system as an appropriate measure of
the system’s security. They, however, do not propose a
concrete method to estimate the attacker effort.

Voas et al. propose a relative security metric based on a
fault injection technique [43]. They propose a Minimum-
Time-To-Intrusion (MTTI) metric based on the predicted
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period of time before any simulated intrusion can take
place. The MTTI value, however, depends on the threat
classes simulated and the intrusion classes observed. In
contrast, the attack surface metric does not depend on any
threat class. Moreover, the MTTI computation assumes
knowledge of system vulnerabilities.

Ortalo et al. model a system’s known vulnerabilities as a
privilege graph [52] and combine assumptions about the
attacker’s behavior with the privilege graphs to obtain
attack state graphs [44]. They analyze the attack state
graphs using Markov techniques to estimate the effort an
attacker might spend to exploit the vulnerabilities; the
estimated effort is a measure of the system’s security. Their
technique, however, assumes knowledge of the system’s
vulnerabilities and the attacker’s behavior. Moreover, their
approach focuses on assessing the operational security of
operating systems and not individual software applications.

Schneier uses attack trees to model the different ways in
which a system can be attacked [45]. Given an attacker goal,
Schneier constructs an attack tree to identify the different
ways in which the goal can be satisfied and to determine the
cost to the attacker in satisfying the goal. The estimated cost
is a measure of the system’s security. Construction of an
attack tree, however, assumes the knowledge of the
following three factors: system vulnerabilities, possible
attacker goals, and the attacker behavior.

McQueen et al. use an estimate of a system’s expected
Time-To-Compromise (TTC) as an indicator of the system’s
security risk [46]. TTC is the expected time needed by an
attacker to gain a privilege level in a system; TTC, however,
depends on the system’s vulnerabilities and the attacker’s
skill level.

8 CONCLUSION AND FUTURE WORK

There is a pressing need for practical security metrics and
measurements today. In this paper, we formalized a
pragmatic approach of attack surface measurement; our
method is useful to both software industry and software
consumers. Howard’s measurement method is already used
on a regular basis as part of Microsoft’s Security Develop-
ment Lifecycle. Mu Security’s Mu-4000 Security Analyzer
uses our measurement framework for security analysis [53].
SAP is also planning to use attack surface measurements in
their software quality improvement process.

Our work can be extended in three possible directions.
First, our attack surface measurement method requires a
system’s source code. It may not, however, always be feasible
to obtain the source code of a system (e.g., commercial
software). Moreover, the size of the codebase may be
prohibitively large (e.g., the codebase of a Linux distribu-
tion). A useful extension of the measurement method would
be to define a systematic way to approximate a system’s
attack surface measurement in the absence of source code.
Second, our I/O automata model is not expressive enough to
include attacks such as side channel attacks, covert channel
attacks, and attacks where one user of a software system can
affect other users (e.g., fork bombs). A possible direction of
future work would be to extend our formalization of damage
potential and attacker effort to include such attacks. Third,
another possible direction of future work would be to

explore the use of attack surface measurements in “safe”
software composition, e.g., we may consider a composition
of two systems, A and B, to be safe if the attack surface
measurement of the composition is not greater than the sum
of A and B’s measurements.

We view our work as a first step in the grander challenge
of security metrics. We believe that no single security metric
or measurement will be able to fulfill our requirements. We
certainly need multiple metrics and measurements to
quantify different aspects of security. A possible direction
of future work would be to establish a framework for
combining multiple security measurements.
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