
Chapter 1
Game Theoretic Approaches to Attack
Surface Shifting

Pratyusa K. Manadhata

Abstract A software system’s attack surface is the set of ways in which the system
can be attacked. In our prior work, we introduced an attack surface measurement
and reduction method to mitigate a software system’s security risk (Manadhata, An
attack surface metric, Ph.D. thesis, Carnegie Mellon University, 2008; Manadhata
and Wing, IEEE Trans. Softw. Eng. 37:371–386, 2011). In this paper, we explore the
use of attack surface shifting in the moving target defense approach. We formalize
the notion of shifting the attack surface and introduce a method to quantify the
shift. We cast the moving target defense approach as a security-usability trade-off
and introduce a two-player stochastic game model to determine an optimal moving
target defense strategy. A system’s defender can use our game theoretic approach to
optimally shift and reduce the system’s attack surface.

1.1 Introduction

In our prior work, we formalized the notion of a software system’s attack surface
and proposed to use a system’s attack surface measurement as an indicator of the
system’s security [5, 6]. Intuitively, a system’s attack surface is the set of ways in
which an adversary can enter the system and potentially cause damage. Hence the
larger the attack surface, the more insecure the system; we can mitigate a system’s
security risk by reducing the system’s attack surface. We also introduced an attack
surface metric to measure a system’s attack surface in a systematic manner.

Our prior work focused on the uses of attack surface measurements in the
software development process. We introduced an attack surface reduction approach
that complements the software industry’s traditional code quality improvement
approach to mitigate security risk. The code quality improvement effort aims toward

P.K. Manadhata (�)
HP Labs, #301, 5 Vaughn Dr, Princeton, NJ 08854, USA
e-mail: manadhata@cmu.edu

S. Jajodia et al. (eds.), Moving Target Defense II: Application of Game Theory
and Adversarial Modeling, Advances in Information Security 100,
DOI 10.1007/978-1-4614-5416-8 1, © Springer Science+Business Media New York 2013

1

2 P.K. Manadhata

old
surface

X
new
surface

1

2

3

1

2

3

4

Fig. 1.1 If we shift a system’s attack surface, then attacks that worked in the past, e.g., attack 1,
may not work any more. The shifting, however, may enable new attacks, e.g. attack 4, on the system

reducing the number of security vulnerabilities in software. In practice, however,
building large and complex software devoid of security vulnerabilities remains
a very difficult task. Software vendors have to embrace the hard fact that their
software will ship with both known and future vulnerabilities in them and many of
those vulnerabilities will be discovered and exploited. They can, however, minimize
the risk associated with the exploitation of these vulnerabilities by reducing their
software’s attack surfaces. A smaller attack surface makes the vulnerabilities’
exploitation harder and lowers the damage of exploitation, and hence mitigates the
security risk.

In this paper, we focus on the uses of attack surface measurements in the
context of moving target defense. We consider a scenario where system defenders,
e.g., system administrators, are continuously trying to protect their systems from
attackers. Moving target defense is a novel protection mechanism where the
defenders continuously shift their systems’ attack surfaces to increase the attacker’s
effort in exploiting their systems’ vulnerabilities [1]. As shown in Fig. 1.1, if a
defender shifts a system’s attack surface, then old attacks that worked in the past,
e.g., attack 1, may not work any more. Hence the attacker has to spent more effort
to make past attacks work or find new attacks, e.g., attack 4. We view the interaction
between a defender and an attacker as a two-player game and hence explore the use
of game theory in shifting the attack surface.

The rest of the paper is organized as follows. We briefly discuss our attack surface
measurement approach in Sect. 1.2. In Sect. 1.3, we formalize the notion of shifting
the attack surface and discuss the uses of attack surface shifting in moving target
defense. In Sect. 1.4, we explore game theoretic approaches to attack surface shifting
to achieve an optimal balance between security and usability. We conclude with a
summary in Sect. 1.5.

1.2 Attack Surface Measurement

We know from the past that many attacks, e.g., exploiting a buffer overflow, on a
system take place by sending data from the system’s operating environment into
the system. Similarly, many other attacks, e.g., symlink attacks, on a system take

1 Game Theoretic Approaches to Attack Surface Shifting 3

place because the system sends data into its environment. In both these types of
attacks, an attacker connects to a system using the system’s channels (e.g., sockets),
invokes the system’s methods (e.g., API), and sends data items (e.g., input strings)
into the system or receives data items from the system. An attacker can also send
(receive) data indirectly into (from) a system by using shared persistent data items
(e.g., files). Hence an attacker uses a system’s methods, channels, and data items
present in the system’s environment to attack the system. We collectively refer to
a system’s methods, channels, and data items as the system’s resources and thus
define a system’s attack surface in terms of the system’s resources.

1.2.1 Attack Surface Definition

Not all resources, however, are part of the attack surface. A resource is part of
the attack surface if an attacker can use the resource in attacks on the system.
We introduced the entry point and exit point framework to identify these relevant
resources.

1.2.1.1 Entry Points

A system’s codebase has a set of methods, e.g., the system’s API. A method
receives arguments as input and returns results as output. A system’s methods that
receive data items from the system’s environment are the system’s entry points.
For example, a method that receives input from a user or a method that reads a
configuration file is an entry point. A method m of a system s is a direct entry point
if either (a) a user or a system in s’s environment invokes m and passes data items as
input to m, or (b) m reads from a persistent data item, or (c) m invokes the API of a
system in s’s environment and receives data items as the result returned. An indirect
entry point is a method that receives data items from a direct entry point.

1.2.1.2 Exit Points

A system’s methods that send data items to the system’s environment are the
system’s exit points. For example, a method that writes to a log file is an exit point.
A method m of a system s is a direct exit point if either (a) a user or a system in
s’s environment invokes m and receives data items as results returned from m, or
(b) m writes to a persistent data item, or (c) m invokes the API of a system in s’s
environment and passes data items as input to the API. An indirect exit point is a
method that sends data to a direct exit point.

4 P.K. Manadhata

1.2.1.3 Channels

Each system also has a set of channels; the channels are the means by which users
or other systems in the environment communicate with the system, e.g., TCP/UDP
sockets, RPC end points, and named pipes. An attacker uses a system’s channels to
connect to the system and invoke the system’s methods. Hence the channels act as
another basis for attacks on the system.

1.2.1.4 Untrusted Data Items

An attacker uses persistent data items either to send data indirectly into the system
or to receive data indirectly from the system. Examples of persistent data items are
files, cookies, database records, and registry entries. A system might read from a
file after an attacker writes into the file. Similarly, the attacker might read from a file
after the system writes into the file. Hence the persistent data items act as another
basis for attacks on a system.

1.2.1.5 Attack Surface Definition

A system’s attack surface is the subset of the system’s resources that an attacker can
use to attack the system. By definition, an attacker can use the set, M, of entry points
and exit points, the set, C, of channels, and the set, I, of untrusted data items to send
(receive) data into (from) the system to attack the system. Hence M, C, and I are the
relevant subset of resources that are part of the attack surface and given a system, s,
and its environment, we define s’s attack surface as the triple, 〈M,C, I〉.

1.2.2 Attack Surface Measurement Method

A naive way of measuring a system’s attack surface is to count the number of
resources that contribute to the attack surface. This naive method that gives equal
weight to all resources is misleading since all resources are not equally likely to
be used by an attacker. We estimate a resource’s contribution to a system’s attack
surface as a damage potential-effort ratio where damage potential is the level of
harm the attacker can cause to the system in using the resource in an attack and
effort is the amount of work done by the attacker to acquire the necessary access
rights to be able to use the resource in an attack.

In practice, we estimate a resource’s damage potential and effort in terms of
the resource’s attributes. For example, we estimate a method’s damage potential in
terms of the method’s privilege. An attacker gains the same privilege as a method
by using a method in an attack, e.g., the attacker gains root privilege by exploiting
a buffer overflow in a method running as root. The attacker can cause damage to

1 Game Theoretic Approaches to Attack Surface Shifting 5

the system after gaining root privilege. The attacker uses a system’s channels to
connect to a system and send (receive) data to (from) a system. A channel’s protocol
imposes restrictions on the data exchange allowed using the channel, e.g., a TCP
socket allows raw bytes to be exchanged whereas an RPC endpoint does not.
Hence we estimate a channel’s damage potential in terms of the channel’s protocol.
The attacker uses persistent data items to send (receive) data indirectly into (from) a
system. A persistent data item’s type imposes restrictions on the data exchange, e.g.,
a file can contain executable code whereas a registry entry can not. The
attacker can send executable code into the system by using a file in an attack, but
the attacker can not do the same using a registry entry. Hence we estimate a
data item’s damage potential in terms of the data item’s type. The attacker can use
a resource in an attack if the attacker has the required access rights. The attacker
spends effort to acquire these access rights. Hence for the three kinds of resources,
i.e., method, channel, and data, we estimate attacker effort to use a resource in an
attack in terms of the resource’s access rights.

We assume a function, der, that maps a resource to its damage potential-effort
ratio. In practice, however, we assign numeric values to a resource’s attributes to
compute the ratio, e.g., we compute a method’s damage potential-effort ratio from
the numeric values assigned to the method’s privilege and access rights. We impose
a total order among the values of the attributes and assign numeric values according
to the total order. For example, we assume that an attacker can cause more damage
to a system by using a method running with root privilege than a method running
with non-root privilege; hence we assign a higher number to the root privilege
level than the non-root privilege level. The exact choice of numeric values is
subjective and depends on a system and its environment.

We quantify a system’s attack surface measurement along three dimensions:
methods, channels, and data. We estimate the total contribution of the methods,
the total contribution of the channels, and the total contribution of the data items
to the attack surface. Given the attack surface, 〈M,C, I〉, of a system, s, s’s attack
surface measurement is the triple 〈 ∑

m∈M
der(m), ∑

c∈C
der(c), ∑

d∈I
der(d)〉.

1.3 Moving Target Defense

In this section, we discuss the uses of attack surface measurements in moving target
defense. Moving target defense is a protection approach where a system’s defender
continuously shifts the system’s attack surface. Intuitively, the defender may modify
the attack surface by changing the resources that are part of the attack surface and/or
by modifying the contributions of the resources. Not all modifications, however,
shift the attack surface. The defender shifts the attack surface by removing at least
one resource from the attack surface and/or by reducing at least one resource’s
damage potential-effort ratio. Everything else being equal, attacks that worked in the
past may not work in the future if the attacks depended on the removed (modified)

6 P.K. Manadhata

resource. The shifting process, however, might have enabled new attacks on the
system by adding new resources to the attack surface. Hence the attacker has to
spend more effort to make past attacks work or to identify new attacks.

1.3.1 Shifting the Attack Surface

We formalize the notion of shifting the attack surface in this section and introduce a
method to quantify the shift. We introduced an I/O automata model of a system and
its environment in our prior work; we use the model to define and quantify the shift
in the attack surface.

Consider a set, S, of systems, an attacker, U , and a data store, D. For a system,
s ∈ S, we define s’s environment, Es = 〈U, D, T 〉, to be a three-tuple where T =
S \{s} is the set of systems excluding s. U represents the adversary who attacks the
systems in S. The data store D allows data sharing among the systems in S and U .

We model a system and the entities present in its environment as I/O automata
[4]. An I/O automaton, A = 〈sig(A), states(A), start(A), steps(A)〉, is a four tuple
consisting of an action signature, sig(A), that partitions a set, acts(A), of actions into
three disjoint sets, in(A), out(A), and int(A), of input, output and internal actions,
respectively, a set, states(A), of states, a non-empty set, start(A) ⊆ states(A), of
start states, and a transition relation, steps(A) ⊆ states(A) × acts(A) × states(A).
An execution of A is an alternating sequence of actions and states beginning with
a start state and a schedule of an execution is a subsequence of the execution
consisting only of the actions appearing in the execution.

Given a system, s, and its environment, E , s’s attack surface is the triple, 〈M,C, I〉,
where M is the set of entry points and exit points, C is the set of channels, and I is
the set of untrusted data items of s. We denote the set of resources belonging to
s’s attack surface as Rs = M ∪C∪ I. Also, given two resources, r1 and r2, of s, we
write r1 � r2 to express that r1 makes a larger contribution to the attack surface
than r2. If we modify s’s attack surface, Ro, to obtain a new attack surface, Rn, then
we denote a resource, r’s, contributions to Ro as ro and to Rn as rn. We define attack
surface shifting qualitatively as follows.

Definition 1.1. Given a system, s, its environment, E , s’s old attack surface, Ro, and
s’s new attack surface, Rn, s’s attack surface has shifted if there exists at least one
resource, r, such that (i) r ∈ (Ro \Rn) or (ii) (r ∈ Ro ∩Rn) ∧ (ro � rn).

If we shift s’s attack surface, then attacks that worked on s’s old attack surface
may not work on s’s new attack surface. We model s’s interaction with its
environment as parallel composition, s||E , in our I/O automata model. Since an
attacker attacks a system either by sending data into the system or by receiving data
from the system, any schedule of the composition s||E that contains s’s input actions
or output actions is a potential attack on s. We denote the set of potential attacks
on s as attacks(s,R) where R is s’s attack surface. In our I/O automata model, if
we shift s’s attack surface from Ro to Rn, then with respect to the same attacker

1 Game Theoretic Approaches to Attack Surface Shifting 7

Old attacks New attacks

Ro Rn

Fig. 1.2 If we shift a
system’s attack surface from
Ro to Rn, then at least one
attack that worked on Ro will
not work any more on Rn

and the environment, a few potential attacks on Ro will cease be potential attacks
on Rn. Intuitively, if we remove a resource, r, from the attack surface or reduce r’s
contribution to the attack surface during shifting, then executions of s that contain r
will not be executions in the new attack surface. Hence the schedules derived from
these executions will not be potential attacks on s in the new attack surface (Fig. 1.2).

Theorem 1.1. Given a system, s, and its environment, E, if we shift s’s attack
surface, Ro, to a new attack surface, Rn, then attacks(s,Ro)\ attacks(s,Rn)
= /0.

Proof (Sketch). If we shift s’s attack surface from Ro to Rn, then from Definition 1.1,
there is at least one resource, r, such that either (i) r ∈ (Ro \Rn) or (ii) (r ∈ Ro ∩Rn)
∧ (ro � rn).

If r ∈ (Ro \Rn), then without loss of generality, we assume that Ro = Rn ∪{r}.
Since r ∈ Ro ∧ r /∈ Rn, following arguments similar to the proof of Theorem 1 in
[5], there exists a method, m, such that m ∈ Ro ∧ m /∈ Rn. Hence there exists a
schedule, β , of the composition sRo ||E containing m such that β is not a schedule
of the composition sRn ||E . Hence β ∈ attacks(s,Ro) ∧ β /∈ attacks(s,Rn), and
attacks(s,Ro)\ attacks(s,Rn)
= /0.

Similarly, if (r ∈ Ro ∩Rn) ∧ (ro � rn), then r makes a larger contribution to Ro

than Rn. Following arguments similar to the proof of Theorem 3 in [5], there exists
a method, m ∈ Ro ∩Rn, such that m has a stronger pre condition and/or a weaker
post condition in Ro than Rn. Hence there exists a schedule, β , of the composition
sRo ||E containing m such that β is not a schedule of the composition sRn ||E . Hence
β ∈ attacks(s,Ro)∧β /∈ attacks(s,Rn), and attacks(s,Ro)\ attacks(s,Rn)
= /0. ��

We introduced a qualitative notion of shifting the attack surface in previous
paragraphs. We quantify the shift in the attack surface as follows.

Definition 1.2. Given a system, s, its environment, E , s’s old attack surface, Ro, and
s’s new attack surface, Rn, the shift, ΔAS, in s’s attack surface is

|Ro \Rn|+ |{r : (r ∈ Ro ∩Rn)∧ (ro � rn)}|

In Definition 1.2, the term |Ro \Rn| represents the number of resources that
were part of s’s old attack surface, but were removed from s’s new attack surface.
Similarly, the term

|{r : (r ∈ Ro ∩Rn)∧ (ro � rn)}|

8 P.K. Manadhata

represents the number of resources that make larger contributions to s’s new attack
surface than the old attack surface. If ΔAS > 0, then we say that s’s attack surface
has shifted from Ro to Rn.

Our definition assumes that all resources contribute equally to the shift in the
attack surface. We may be able to quantify the shift better by considering the
resources’ attributes, e.g., a resource’s damage potential-effort ratio. We leave such
quantification approaches as future work.

1.3.2 Ways to Shift the Attack Surface

The defender may modify the attack surface in three different ways. But only
two of these three ways shift the attack surface. First, the defender may shift the
attack surface and also reduce the attack surface measurement by disabling and/or
modifying the system’s features (Scenario A). Disabling the features reduces the
number of entry points, exit points, channels, and data items, and hence reduces
the number of resources that are part of the attack surface. Modifying the features
reduces the damage potential-effort ratios of the resources that are part of the attack
surface, e.g., lowering a method’s privilege or increasing the method’s access rights,
and hence reduces the resources’ contributions to the attack surface measurement.

Second, the defender may shift the attack surface by enabling new features
and disabling existing features. Disabling the features removes resources from the
attack surface and hence shifts the attack surface. The attack surface measurement,
however, may decrease (Scenario B), remain the same (Scenario C), or increase
(Scenario D). The enabled features increase the attack surface measurement by
adding more resources to the attack surface and the disabled features decrease the
measurement by removing resources from the attack surface; the overall change
in the measurement may be negative, zero, or positive. Similarly, the defender
may shift the attack surface by modifying existing features such that the damage
potential-effort ratios of a set of resources decrease and the ratios of another set of
resources increase. The attack surface measurement may decrease, remain the same,
or increase.

Third, the defender may modify the attack surface by enabling new features. The
new features add new resources to the attack surface and hence increase the attack
surface measurement. The attack surface, however, doesn’t shift since the old attack
surface still exists and all attacks that worked in the past will still work (Scenario E).
The defender may also increase the attack surface measurement without shifting the
attack surface by increasing the damage potential-effort ratios of existing resources.
We summarize the scenarios in Table 1.1.

From a protection standpoint, the defender’s preference over the scenarios is
the following: A > B > C > D > E. Scenario A is preferred over scenario B
because scenario B adds new resources to the attack surface and the new resources
may enable new attacks on the system. Scenario D increases the attack surface
measurement; but it may be attractive in moving target defense, especially if the
increase in the measurement is low and the shift in the attack surface is large.

1 Game Theoretic Approaches to Attack Surface Shifting 9

Table 1.1 Different scenarios to modify and shift the attack surface. Not all
modifications shift the attack surface

Scenario Features
Attack
surface shift

Attack surface
measurement

A Disabled Yes Decrease
B Enabled and disabled Yes Decrease
C Enabled and disabled Yes No change
D Enabled and disabled Yes Increase
E Enabled No Increase

1.3.3 A Security-Usability Trade-off

The defender may not always be able to shift and reduce the attack surface. The
defender may have to enable new features or modify existing features to provide
desirable services to the system’s users at the expense of an increased attack
surface measurement. For example, the users may demand remote access to the
system and hence defender may have to open a new communication channel, e.g.,
a TCP port, to satisfy the demand. The increased attack surface may enable new
attacks on the system. Similarly, attack surface reduction comes at a cost; the
reduction process disables or modifies the system’s features and hence the system
may not be able to provide certain services as before. Hence the defender has to
make a classic security-usability trade-off as part of the moving target defense.
In Sect. 1.4.1, we discuss game theoretic approaches to determine optimal ways to
modify and shift the attack surface to achieve moving target defense.

1.4 Game Theoretic Approaches

In our prior work, we viewed attack surface measurement and reduction as a “static”
process, i.e., software developers measure their systems’ attack surfaces without
making any assumptions about an attacker (e.g., the attacker’s resources, skill
levels, and behavior) and then try to reduce the attack surface as much as possible.
In this section, we consider attack surface reduction and shifting in a dynamic
moving target defense environment - a defender continuously tries to protect a
system from an attacker by reducing and shifting the attack surface. We model the
interaction between the defender and the attacker as a two player game and use game
theory to determine optimal defense strategies. The game theoretic model allows us
to explicitly model the attacker. Hence the defender can choose optimal defense
strategies for different attacker profiles such as script kiddies, experienced hackers,
organized criminals, and nation states.

10 P.K. Manadhata

1.4.1 Optimal Moving Target Defense

We model the interaction between a system’s defender and an attacker as a two-
player stochastic extensive game [8].

1.4.1.1 A Game Model

Our stochastic game model is similar to the model introduced by Lye and Wing [3].
Our model is a 7 tuple, 〈S, Ad , Aa, T, Rd , Ra, β 〉, where S is a set of system states,
Ad is the defender’s action set, Aa is the attacker’s action set, T : S×Ad ×Aa ×S →
[0,1] is the state transition function, Rd : S×Ad ×Aa → R is the defender’s reward
function where R is the set of real numbers, Ra : S×Ad ×Aa → R is the attacker’s
reward function, and β ≤ 1 is a discount factor for discounting future rewards.

The defender and the attacker play the game in the following manner. The system
is in the state st ∈ S at time t. The defender performs an action, ad ∈ Ad , and the
attacker performs an action, aa ∈ Aa. The system then moves to a state, st+1 ∈ S,
with probability T (st ,ad ,aa,st+1). The defender’s reward for performing the action
is ra

t = Rd(st ,ad ,aa) and the attacker’s reward is rd
t = Ra(st ,ad,aa). The goals of the

defender and the attacker are to maximize their discounted rewards.

1.4.1.2 States, Actions, and Transitions

We model the system as a set, F , of features. F represents the system’s features
that provide various functionality, e.g., a web server’s login feature provides user
authentication functionality. A feature can be disabled or if enabled, can be in
one of several configurations; each configuration is a mapping of state variables
to their values. A state, st ∈ S, of the system is a mapping of the features to their
configurations, i.e., st : F → Con f iguration. At a given system state, the defender
may choose to shift and reduce the attack surface by acting on the features, e.g., the
defender may enable a disabled feature, disable an enabled feature, modify an en-
abled feature’s configuration, or leave a feature’s configuration unchanged. Hence, a
defender action, ad ∈Ad , is a mapping of the features to the actions performed by the
defender on the features, i.e., ad : F → {enabled,disabled,modi f ied,unchanged}.
In a given system state, the defender can choose from a subset of the set of
actions Ad . For example, if a feature, f , is in enabled configuration in a state, s,
then the defender cannot perform any action that enables f ; the defender can only
disable f , modify f , or leave f unchanged. After the defender performs an action,
the system’s attack surface changes. The attacker then performs an action to attack
the system by utilizing the change in the attack surface; the attacker’s action may
further enable and disable the system’s features. Since the defender’s action and the
attacker’s action enable and/or disable certain system features, the system moves to
a new state according to the probabilistic transition function. The specific values of
the transition probabilities depend on the system and its operating environment.

1 Game Theoretic Approaches to Attack Surface Shifting 11

Potential state space explosion and potential action space explosion are two
disadvantages of our model. The number of states and the number of actions are
exponential in the number of features. For simplicity and tractability, we may focus
on an important subset of the system’s features and may bound the number of
features that an action can enable, disable, or modify.

1.4.1.3 Reward Functions

When the defender performs an action, the action may benefit the defender in
three ways. First, the defender may provide value to the system’s users by enabling
features. Second, the defender may mitigate the system’s security risk by shifting
the attack surface. Third, the defender may mitigate the system’s security risk
by reducing the attack surface measurement. The action, however, may cost the
defender if it disables features or increases the system’s attack surface measurement.
Hence the defender’s reward depends on the change in value derived from the
features, the shift in the attack surface, and the change in the attack surface
measurement.

Similarly, when the attacker performs an action, the attacker benefits from the
increase in the attack surface measurement. But the shift in the attack surface costs
the attacker. Hence the attacker’s reward depends on the shift in the attack surface
and the change in the attack surface measurement.

Consider a state, s, of the system. If the defender performs an action, ad , in a
state, s, and the attacker performs an action, aa, then we denote the change in the
system’s features as ΔF , the shift in the attack surface as ΔAS, and the change in
the attack surface measurement as ΔASM. Then we model the defender’s reward,
Rd , and the attacker’s reward, Ra, as follows.

Rd(s,ad ,aa) = B1(ΔF)+B2(ΔAS)−C1(ΔASM)

Ra(s,ad ,aa) = B3(ΔASM)−C2(ΔAS)

Bis and Cis are functions that map the changes in features, attack surface shift, and
attack surface measurement to real numbers; the numbers reflect the benefits and
costs associated with the changes. The exact choice of Bis and Cis depends on
the system and its operating environment. Please note that our choice of reward
functions makes the game a general-sum game.

1.4.1.4 Optimal Defense Strategies

We model our game as a complete and perfect information game; each player knows
the other player’s strategies and pay-offs, and is aware of the game history, i.e., the
actions already performed by both players in the game [9]. The goal of each player
is to maximize their expected discounted pay-off.

12 P.K. Manadhata

A player’s strategy is a plan of action that the player can take in the game; the
strategy specifies the action(s), given the other player’s strategy, the player can take
at different stages of the game. An optimal strategy maximizes the player’s expected
pay-off.

A stationary strategy is a strategy that is independent of time and history, and
depends only on the system’s state. A pure strategy specifies a single action in a state
whereas a mixed strategy specifies a probability distribution over possible actions in
the state. We use the Nash Equilibrium solution concept to determine the defender’s
optimal stationary strategy. Filar and Vrieze introduced a non-linear program to find
stationary equilibrium strategies in general sum stochastic games [2].

The defender may want an optimal strategy that is dependent on time and
history. The strategy specifies optimal defender action(s) after every history of the
game. Hence the defender can take an optimal action in response to the attacker’s
action at any time in the game. We use the subgame perfect equilibrium concept
to determine the defender’s optimal strategy [8]. Murray and Gordon introduced a
dynamic programming algorithm to find a subgame perfect equilibrium in general
sum stochastic games [7].

Hence the defender can use the concepts of Nash equilibrium and subgame
perfect equilibrium to determine optimal strategies for shifting and reducing the
attack surface. The optimal strategies enable the defender to make the security-
usability trade-off in an informed manner; the system can then provide required
services to its users without compromising its security.

1.5 Summary

In summary, we introduced a game theoretic attack surface shifting and reduction
approach to achieve moving target defense. System defenders can use our approach
to determine their best course of action to protect their systems while providing
required services to their systems’ users. In the future, we plan to instantiate our
model on real world software systems and explore the efficacy of our approach in
real world settings.

References

1. National cyber leap year summit 2009 co-chairs report. http://www.cyber.st.dhs.gov/docs/
National Cyber Leap Year Summit 2009 Co-Chairs Report.pdf (2009)

2. Filar, J., Vrieze, K.: Competitive Markov decision processes. Springer (1997)
3. Lye, K., Wing, J.M.: Game strategies in network security. International Journal of Information

Security pp. 71–86 (2005)
4. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-Quarterly 2(3) (1989)
5. Manadhata, P.K.: An attack surface metric. Ph.D. thesis, Carnegie Mellon University (2008)

http://www.cyber.st.dhs.gov/docs/National_Cyber_Leap_Year_Summit_2009_Co-Chairs_Report.pdf
http://www.cyber.st.dhs.gov/docs/National_Cyber_Leap_Year_Summit_2009_Co-Chairs_Report.pdf

1 Game Theoretic Approaches to Attack Surface Shifting 13

6. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng. 37,
371–386 (2011). DOI http://dx.doi.org/10.1109/TSE.2010.60. URL http://dx.doi.org/10.1109/
TSE.2010.60

7. Murray, C., Gordon, G.: Finding correlated equilibria in general sum stochastic games. Tech.
Rep. CMU-ML-07-113, Carnegie Mellon University (2007)

8. Osborne, M., Rubinstein, A.: A course in game theory. MIT Press (1994)
9. Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V., Wu, Q.: A survey of game theory

as applied to network security. Hawaii International Conference on System Sciences 0, 1–10
(2010). DOI http://doi.ieeecomputersociety.org/10.1109/HICSS.2010.35

http://dx.doi.org/10.1109/TSE.2010.60
http://dx.doi.org/10.1109/TSE.2010.60
http://dx.doi.org/10.1109/TSE.2010.60
http://doi.ieeecomputersociety.org/10.1109/HICSS.2010.35

	Chapter1 Game Theoretic Approaches to Attack Surface Shifting
	1.1 Introduction
	1.2 Attack Surface Measurement
	1.2.1 Attack Surface Definition
	1.2.1.1 Entry Points
	1.2.1.2 Exit Points
	1.2.1.3 Channels
	1.2.1.4 Untrusted Data Items
	1.2.1.5 Attack Surface Definition

	1.2.2 Attack Surface Measurement Method

	1.3 Moving Target Defense
	1.3.1 Shifting the Attack Surface
	1.3.2 Ways to Shift the Attack Surface
	1.3.3 A Security-Usability Trade-off

	1.4 Game Theoretic Approaches
	1.4.1 Optimal Moving Target Defense
	1.4.1.1 A Game Model
	1.4.1.2 States, Actions, and Transitions
	1.4.1.3 Reward Functions
	1.4.1.4 Optimal Defense Strategies

	1.5 Summary
	References

