
Chapter 1

A Formal Model for a System’s Attack Surface

Pratyusa K. Manadhata and Jeannette M. Wing

Abstract Practical software security metrics and measurements are essential for
secure software development. In this chapter, we introduce the measure of a software
system’s attack surface as an indicator of the system’s security. The larger the attack
surface, the more insecure the system. We formalize the notion of a system’s attack
surface using an I/O automata model of the system and introduce an attack surface
metric to measure the attack surface in a systematic manner. Our metric is agnostic
to a software system’s implementation language and is applicable to systems of all
sizes. Software developers can use the metric in multiple phases of the software
development process to improve software security. Similarly, software consumers
can use the metric in their decision making process to compare alternative software.

1.1 Introduction

Measurement of security, both qualitatively and quantitatively, has been a long
standing challenge to the research community and is of practical import to soft-
ware industry today [7, 28, 22, 29]. There is a growing demand for secure software
as we are increasingly depending on software in our day-to-day life. The software
industry has responded to the demands by increasing effort for creating “more se-
cure” products and services (e.g., Microsoft’s Trustworthy Computing Initiative and
SAP’s Software LifeCycle Security efforts). How can industry determine whether
this effort is paying off and how can consumers determine whether industry’s ef-
fort has made a difference? We need security metrics and measurements to gauge
progress with respect to security; software developers can use metrics to quantify

Pratyusa K. Manadhata
HP Labs, 5 Vaughn Dr, Princeton, NJ 08540, e-mail: manadhata@cmu.edu

Jeannette M. Wing
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213 e-mail: wing@
cs.cmu.edu

© Springer Science+Business Media, LLC 2011

1S. Jajodia et al. (eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber
Threats, Advances in Information Security 54, DOI 10.1007/978-1-4614-0977-9_1,

mailto:manadhata@cmu.edu
mailto:wing@cs.cmu.edu
mailto:wing@cs.cmu.edu

2 Pratyusa K. Manadhata and Jeannette M. Wing

the improvement in security from one version of their software to another and soft-
ware consumers can use metrics to compare alternative software that provide the
same functionality.

In this chapter, we formalize the notion of a system’s attack surface and use
the measure of a system’s attack surface as an indicator of the system’s security.
Intuitively, a system’s attack surface is the set of ways in which an adversary can
enter the system and potentially cause damage. Hence the larger the attack surface,
the more insecure the system. We also introduce an attack surface metric to measure
a system’s attack surface in a systematic manner.

Our metric does not preclude future use of the attack surface notion to define
other security metrics and measurements. In this chapter, we use the attack surface
metric in a relative manner, i.e., given two systems, we compare their attack surface
measurements to indicate whether one is more secure than another with respect to
the attack surface metric. Also, we use the attack surface metric to compare only
similar systems, i.e., different versions of the same system (e.g., different versions
of the Windows operating system) or different systems with similar functionality
(e.g., different File Transfer Protocol (FTP) servers). We leave other contexts of use
for both notions—attack surface and attack surface metric—as future work.

1.1.1 Motivation

Our attack surface metric is useful to both software developers and software con-
sumers.

Software vendors have traditionally focused on improving code quality to im-
prove software security and quality. The code quality improvement effort aims to-
ward reducing the number of design and coding errors in software. An error causes
software to behave differently from the intended behavior as defined by the soft-
ware’s specification; a vulnerability is an error that can be exploited by an attacker.
In principle, we can use formal correctness proof techniques to identify and remove
all errors in software with respect to a given specification and hence remove all its
vulnerabilities. In practice, however, building large and complex software devoid of
errors, and hence security vulnerabilities, remains a very difficult task. First, speci-
fications, in particular explicit assumptions, can change over time so something that
was not an error can become an error later. Second, formal specifications are rarely
written in practice. Third, formal verification tools used in practice to find and fix
errors, including specific security vulnerabilities such as buffer overruns, usually
trade soundness for completeness or vice versa. Fourth, we do not know the vulner-
abilities of the future, i.e., the errors present in software for which exploits will be
developed in the future.

Software vendors have to embrace the hard fact that their software will ship with
both known and future vulnerabilities in them and many of those vulnerabilities
will be discovered and exploited. They can, however, minimize the risk associated
with the exploitation of these vulnerabilities. One way to minimize the risk is by

1 A Formal Model for a System’s Attack Surface 3

reducing the attack surfaces of their software. A smaller attack surface makes the
exploitation of the vulnerabilities harder and lowers the damage of exploitation and
hence mitigates the security risk. As shown in Figure 1.1, the code quality effort and
the attack surface reduction approach are complementary; a complete risk mitigation
strategy requires a combination of both. Hence software developers can use our
metric as a tool in the software development process to reduce their software’s attack
surfaces.

Fig. 1.1 Attack Surface Reduction and Code Quality Improvement are complementary approaches
for mitigating security risk and improving software security.

Software consumers often face the task of choosing one software product from a
set of competing and alternative products that provide similar functionality. For ex-
ample, system administrators often make a choice between different available oper-
ating systems, web servers, database servers, and FTP servers for their organization.
Several factors such as ease of installation, maintenance, and use, and interoper-
ability with existing enterprise software are relevant to software selection; security,
however, is a quality that many consumers care about today and will use in choosing
one software system over another. Hence software consumers can use our metric to
measure the attack surfaces of alternative software and use the measurements as a
guide in their decision making process.

1.1.2 Attack Surface Metric

We know from the past that many attacks, e.g., exploiting a buffer overflow error,
on a system take place by sending data from the system’s operating environment
into the system. Similarly, many other attacks, e.g., symlink attacks, on a system
take place because the system sends data into its environment. In both these types of
attacks, an attacker connects to a system using the system’s channels (e.g., sockets),
invokes the system’s methods (e.g., API), and sends data items (e.g., input strings)

4 Pratyusa K. Manadhata and Jeannette M. Wing

into the system or receives data items from the system. An attacker can also send
data indirectly into a system by using data items that are persistent (e.g., files). An
attacker can send data into a system by writing to a file that the system later reads.
Similarly, an attacker can receive data indirectly from the system by using shared
persistent data items. Hence an attacker uses a system’s methods, channels, and data
items present in the system’s environment to attack the system. We collectively refer
to a system’s methods, channels, and data items as the system’s resources and thus
define a system’s attack surface in terms of the system’s resources (Figure 1.2).

Fig. 1.2 Intuitively, a system’s attack surface is the subset of the system’s resources (methods,
channels, and data) used in attacks on the system.

Not all resources, however, are part of the attack surface and not all resources
contribute equally to the attack surface measurement. In order to measure a sys-
tem’s attack surface, we need to identify the relevant resources that are part of the
system’s attack surface and to determine the contribution of each such resource to
the system’s attack surface measurement. A resource is part of the attack surface if
an attacker can use the resource in attacks on the system; we introduce an entry point
and exit point framework to identify these relevant resources. A resource’s contribu-
tion to the attack surface measurement reflects the likelihood of the resource being
used in attacks. For example, a method running with root privilege is more likely
to be used in attacks than a method running with non-root privilege. We introduce
the notion of a damage potential-effort ratio to estimate a resource’s contribution to
the attack surface measurement. A system’s attack surface measurement is the total
contribution of the resources along the methods, channels, and data dimensions; the
measurement indicates the level of damage an attacker can potentially cause to the
system and the effort required for the attacker to cause such damage. Given two
systems, we compare their attack surface measurements to indicate, along each of
the three dimensions, whether one is more secure than the other with respect to the
attack surface metric.

A system’s attack surface measurement does not represent the system’s code
quality; hence a large attack surface measurement does not imply that the system

1 A Formal Model for a System’s Attack Surface 5

has many vulnerabilities and having few vulnerabilities in a system does not imply
a small attack surface measurement. Instead, a larger attack surface measurement
indicates that an attacker is likely to exploit the vulnerabilities present in the sys-
tem with less effort and cause more damage to the system. Since a system’s code
is likely to contain vulnerabilities, it is prudent for software developers to reduce
their software’s attack surfaces and for software consumers to choose software with
smaller attack surfaces to mitigate security risk.

1.1.3 Roadmap

The rest of this chapter is organized as follows. We briefly discuss the inspiration
behind our research in Section 1.2. In Section 1.3, we introduce the entry point and
exit point framework based on the I/O automata model and define a system’s attack
surface in terms of the framework. In Section 1.4, we introduce the notions of dam-
age potential and effort to estimate a resource’s contribution to the attack surface;
we also define a qualitative measure of the attack surface. We define a quantita-
tive measure of the attack surface and introduce an abstract method to quantify the
attack surface in Section 1.5. In Section 1.6, we briefly discuss empirical attack sur-
face measurement results and validation studies. We compare our work with related
work in Section 1.7 and conclude with a discussion of future work in Section 1.8.

1.2 Motivation

Our research on attack surface measurement is inspired by Michael Howard’s Rela-
tive Attack Surface Quotient (RASQ) measurements [12]. We generalized Howard’s
method and applied the method to four versions of the Linux operating system [20].

1.2.1 Windows Measurements

Michael Howard of Microsoft informally introduced the notion of attack surface for
the Windows operating system and Pincus and Wing further elaborated on Howard’s
informal notion [11]. The first step in Howard’s method is the identification of the
attack vectors of Windows, i.e., the features of Windows often used in attacks on
Windows. Examples of such features are services running on Windows, open sock-
ets, dynamic web pages, and enabled guest accounts. Not all features, however, are
equally likely to be used in attacks on Windows. For example, a service running as
SYSTEM is more likely to be attacked than a service running as an ordinary user.
Hence the second step in Howard’s method is the assignment of weights to the at-
tack vectors to reflect their attackability, i.e., the likelihood of a feature being used

6 Pratyusa K. Manadhata and Jeannette M. Wing

in attacks on Windows. The weight assigned to an attack vector is the attack vector’s
contribution to the attack surface. The final step in Howard’s method is the estima-
tion of the total attack surface by adding the weighted counts of the attack vectors;
for each instance of an attack vector, the attack vector’s weight is added to the total
attack surface.

Howard, Pincus, and Wing applied Howard’s measurement method to seven ver-
sions of the Windows operating system. They identified twenty attack vectors for
Windows based on the history of attacks on Windows and then assigned weights to
the attack vectors based on their expert knowledge of Windows. The measurement
method was adhoc in nature and was based on intuition; the measurement results,
however, confirmed perceived belief about the relative security of the seven versions
of Windows. For example, Windows 2000 was perceived to have improved security
compared to Windows NT [16]. The measurement results showed that Windows
2000 has a smaller attack surface than Windows NT; hence the measurements re-
flected the general perception. Similarly, the measurements showed that Windows
Server 2003 has the smallest attack surface among the seven versions. The mea-
surement is consistent with observed behavior in several ways, e.g., the relative
susceptibility of the versions to worms such as Code Red and Nimda.

1.2.2 Linux Measurements

We applied Howard’s measurement method to four versions of Linux (three RedHat
and one Debian) to understand the challenges in applying the method and then to
define an improved measurement method.

Howard’s method did not have a formal definition of a system’s attack vectors.
Hence there was no systematic way to identify Linux’s attack vectors. We used the
history of attacks on Linux to identify Linux’s attack vectors. We identified the fea-
tures of Linux appearing in public vulnerability bulletins such MITRE Common
Vulnerability and Exposures (CVE), Computer Emergency Response Team (CERT)
Advisories, Debian Security Advisories, and Red Hat Security Advisories; these
features are often used in attacks on Linux. We categorized these features into four-
teen attack vectors.

Howard, Pincus, and Wing used their intuition and expertise of Windows secu-
rity to assign weights in the Windows measurements. Their method, however, did
not include any suggestions on assigning weights to other software systems’ attack
vectors. We could not determine a systematic way to assign weights to Linux’s at-
tack vectors. Hence we did not assign explicit numeric weights to the attack vectors;
we assumed that each attack vector has the same weight. We then counted the num-
ber of instances of each attack vector for the four versions of Linux and compared
the numbers to get a relative measure of the four versions’ attack surfaces.

Our measurements showed that the attack surface notion held promise; e.g., De-
bian was perceived to be a more secure OS and that perception was reflected in
our measurement. We, however, identified two shortcomings in the measurement

1 A Formal Model for a System’s Attack Surface 7

method. First, Howard’s method is based on informal notions of a system’s attack
surface and attack vectors; hence there is no systematic method to identify the attack
vectors and to assign weights to them. Second, the method requires a security ex-
pert (e.g., Howard for Windows), minimally to enumerate attack vectors and assign
weights to them. Thus, taken together, non-experts cannot systematically apply his
method easily.

Our research on defining a systematic attack surface measurement method is mo-
tivated by our above findings. We use the entry point and exit point framework to
identify the relevant resources that contribute to a system’s attack surface and we
use the notion of the damage potential-effort ratio to estimate the weights of each
such resource. Our measurement method entirely avoids the need to identify the
attack vectors. Our method does not require a security expert; hence software devel-
opers with little security expertise can use the method. Furthermore, our method is
applicable, not just to operating systems, but also to a wide variety of software such
as web servers, IMAP servers, and application software.

1.3 I/O Automata Model

In this section, we introduce the entry point and exit point framework and use the
framework to define a system’s attack surface. Informally, a system’s entry points
are the ways through which data “enters” into the system from its environment and
exit points are the ways through which data “exits” from the system to its environ-
ment. Many attacks on software systems require an attacker either to send data into
a system or to receive data from a system; hence a system’s entry points and the exit
points act as the basis for attacks on the system.

1.3.1 I/O Automaton

We model a system and the entities present in its environment as I/O automata [18].
We chose I/O automata as our model for two reasons. First, our notions of entry
points and exit points map naturally to an I/O automaton’s input actions and out-
put actions. Second, the I/O automaton’s composition property allows us to easily
reason about a system’s attack surface in a given environment.

An I/O automaton, A = 〈sig(A), states(A), start(A), steps(A)〉, is a four tuple
consisting of an action signature, sig(A), that partitions a set, acts(A), of actions into
three disjoint sets, in(A), out(A), and int(A), of input, output and internal actions,
respectively, a set, states(A), of states, a non-empty set, start(A) ⊆ states(A), of
start states, and a transition relation, steps(A) ⊆ states(A) × acts(A) × states(A).
An I/O automaton’s environment generates input and transmits the input to the au-
tomaton using input actions. In contrast, the automaton generates output actions and
internal actions autonomously and transmits output to its environment. Our model

8 Pratyusa K. Manadhata and Jeannette M. Wing

does not require an I/O automaton to be input-enabled, i.e., unlike a standard I/O
automaton, input actions are not always enabled in our model. Instead, we assume
that every action of an automaton is enabled in at least one reachable state of the
automaton.

We construct an I/O automaton modeling a complex system by composing the
I/O automata modeling the system’s simpler components. When we compose a set
of automata, we identify different automata’s same-named actions; we identify an
automaton’s output action, m, with the input action m of each automaton having m
as an input action. When an automaton having m as an output action performs m, all
automata having m as an input action perform m simultaneously. The composition
of a set of I/O automata results in an I/O automaton.

1.3.2 Model

Consider a set, S, of systems, a user, U , and a data store, D. For a given system, s∈ S,
we define its environment, Es = 〈U, D, T 〉, to be a three-tuple where T = S\{s} is
the set of systems excluding s. The system s interacts with its environment Es; hence
we define the entry points and exit points of s with respect to Es. Figure 1.3 shows
a system, s, and its environment, Es = 〈U, D, {s1, s2,}〉. For example, s could be
a web server and s1 and s2 could be an application server and a directory server,
respectively.

Fig. 1.3 A system, s, and its environment, Es.

We model every system s ∈ S as an I/O automaton, 〈sig(s), states(s), start(s),
steps(s)〉. We model the methods in s’s codebase as actions of the I/O automaton.
We specify the actions using pre and post conditions: for an action, m, m.pre and
m.post are the pre and post conditions of m, respectively. A state, st ∈ states(s), of s
is a mapping of the state variables to their values: st: Var →Val. An action’s pre and
post conditions are first order predicates on the state variables. A state transition,
〈st, m, st ′ 〉 ∈ steps(s), is the invocation of an action m in state st resulting in state
st ′. An execution of s is an alternating sequence of actions and states beginning

1 A Formal Model for a System’s Attack Surface 9

with a start state and a schedule of an execution is a subsequence of the execution
consisting only of the actions appearing in the execution.

Every system has a set of communication channels. A system, s’s, channels are
the means by which the user U or any system s1 ∈ T communicates with s. Spe-
cific examples of channels are TCP/UDP sockets and named pipes. We model each
channel of a system as a special state variable of the system.

We also model the user U and the data store D as I/O automata. The user U
and the data store D are global with respect to the systems in S. For simplicity, we
assume only one user U present in the environment. U represents the adversary who
attacks the systems in S.

We model the data store D as a separate entity to allow sharing of data among
the systems in S. The data store D is a set of typed data items. Specific examples
of data items are strings, URLs, files, and cookies. For every data item, d ∈ D, D
has an output action, readd , and an input action, writed . A system, s, or the user U
reads d from the data store through the invocation of readd and writes d to the data
store through the invocation of writed . To model global sharing of the data items,
corresponding to each data item d ∈ D, we add a state variable, d, to every system,
s ∈ S, and the user U . When the system s (or U) reads the data item d from the
data store, the value of the data item is written to the state variable d of s (or U).
Similarly, when s (or U) writes the data item d to the data store, the value of the
state variable d of s (or U) is written to the data item d of the data store.

1.3.3 Entry Points

The methods in a system’s codebase that receive data from the system’s environ-
ment are the system’s entry points. A system’s methods can receive data directly or
indirectly from the environment. A method, m, of a system, s, receives data items
directly if either (i.) the user U (Figure 1.4.a) or a system, s′, (Figure 1.4.b) in the
environment invokes m and passes data items as input to m, or (ii.) m reads data
items from the data store (Figure 1.4.c), or (iii.) m invokes a method of a system,
s′, in the environment and receives data items as results returned (Figure 1.4.d). A
method is a direct entry point if it receives data items directly from the environment.
Examples of the direct entry points of a web server are the methods in the API of
the web server, the methods of the web server that read configuration files, and the
methods of the web server that invoke the API of an application server.

In the I/O automata model, a system, s, can receive data from the environment
if s has an input action, m, and an entity in the environment has a same-named
output action, m. When the entity performs the output action m, s performs the input
action m and data is transmitted from the entity to s. We formalize the scenarios
when a system, s′ ∈ T , invokes m (Figure 1.4.b) or when m invokes a method of
s′ (Figure 1.4.d) the same way, i.e., s has an input action, m, and s′ has an output
action, m.

10 Pratyusa K. Manadhata and Jeannette M. Wing

Fig. 1.4 Direct Entry Point. Fig. 1.5 Indirect Entry Point.

Definition 1.1. A direct entry point of the system s is an input action, m, of s such
that either (i.) the user U has the output action m (Figure 1.4.a), or (ii.) a system,
s′ ∈ T , has the output action m (Figure 1.4.b and Figure 1.4.d), or (iii.) the data store
D has the output action m (Figure 1.4.c).

A method, m, of s receives data items indirectly if either (i.) a method, m1, of s
receives a data item, d, directly, and either m1 passes d as input to m (Figure 1.5.a)
or m receives d as result returned from m1 (Figure 1.5.b), or (ii.) a method, m2,
of s receives a data item, d, indirectly, and either m2 passes d as input to m (Fig-
ure 1.5.c) or m receives d as result returned from m2 (Figure 1.5.d). A method is
an indirect entry point if it receives data items indirectly from the environment. For
example, a method in the API of the web server that receives login information from
a user might pass the information to another method in the authentication module;
the method in the API is a direct entry point and the method in the authentication
module is an indirect entry point.

In the I/O automata model, a system’s internal actions are not visible to other
systems in the environment. Hence we use an I/O automaton’s internal actions to
formalize the system’s indirect entry points. We formalize data transmission using
the pre and post conditions of a system’s actions. If an input action, m, of a system, s,
receives a data item, d, directly from the environment, then the subsequent behavior
of the system s depends on the value of d; hence d appears in the post condition of
m and we write d ∈ Res(m.post) where Res : predicate → 2Var is a function such
that for each post condition (or pre condition), p, Res(p) is the set of resources
appearing in p. Similarly, if an action, m, of s receives a data item d from another
action, m1, of s, then d appears in the post condition of m1 and in the pre condition
of m. Similar to the direct entry points, we formalize the scenarios Figure 1.5.a and
Figure 1.5.b the same way and the scenarios Figure 1.5.c and Figure 1.5.d the same
way. We define indirect entry points recursively.

Definition 1.2. An indirect entry point of the system s is an internal action, m, of
s such that either (i.) ∃ direct entry point, m1, of s such that m1.post ⇒ m.pre and
∃ a data item, d, such that d ∈ Res(m1.post)∧ d ∈ Res(m.pre) (Figure 1.5.a and
Figure 1.5.b), or (ii.) ∃ indirect entry point, m2, of s such that m2.post ⇒ m.pre
and ∃ data item, d, such that d ∈ Res(m2.post)∧d ∈ Res(m.pre) (Figure 1.5.c and
Figure 1.5.d).

1 A Formal Model for a System’s Attack Surface 11

The set of entry points of s is the union of the set of direct entry points and the
set of indirect entry points of s.

1.3.4 Exit Points

A system’s methods that send data to the system’s environment are the system’s exit
points. For example, a method that writes into a log file is an exit point. A system’s
methods can send data directly or indirectly into the environment. A method, m,
of a system, s, sends data items directly if either (i.) the user U (Figure 1.6.a) or a
system, s′, (Figure 1.6.b) in the environment invokes m and receives data items as
results returned from m, or (ii.) m writes data items to the data store (Figure 1.6.c),
or (iii.) m invokes a method of a system, s′, in the environment and passes data items
as input (Figure 1.6.d).

Fig. 1.6 Direct Exit Point. Fig. 1.7 Indirect Exit Point.

In the I/O automata model, a system, s, can send data to the environment if s
has an output action, m, and an entity in the environment has a same-named input
action, m. When s performs the output action m, the entity performs the input action
m and data is transmitted from s to the entity.

Definition 1.3. A direct exit point of the system s is an output action, m, of s such
that either (i.) the user U has the input action m (Figure 1.6.a), or (ii.) a system,
s′ ∈ T , has the input action m (Figure 1.6.b and Figure 1.6.d) , or (iii.) the data store
D has the input action m (Figure 1.6.c).

A method, m, of s sends data items indirectly to the environment if either (i.) m
passes a data item, d, as input to a direct exit point, m1 (Figure 1.7.a), or m1 receives
a data item, d, as result returned from m (Figure 1.7.b), and m1 sends d directly to
the environment, or (ii.) m passes a data item, d, as input to an indirect exit point, m2
(Figure 1.7.c), or m2 receives a data item, d, as result returned from m (Figure 1.7.d),
and m2 sends d indirectly to the environment. A method m of s is an indirect exit
point if m sends data items indirectly to the environment.

12 Pratyusa K. Manadhata and Jeannette M. Wing

Similar to indirect entry points, we formalize indirect exit points of a system
using an I/O automaton’s internal actions. If an output action, m, sends a data item,
d, to the environment, then the subsequent behavior of the environment depends on
the value of d. Hence d appears in the pre condition of m and in the post condition
of the same-named input action m of an entity in the environment. Again we define
indirect exit points recursively.

Definition 1.4. An indirect exit point of the system s is an internal action, m, of s
such that either (i.) ∃ a direct exit point, m1, of s such that m.post ⇒ m1.pre and
∃ a data item, d, such that d ∈ Res(m.post)∧ d ∈ Res(m1.pre) (Figure 1.7.a and
Figure 1.7.b), or (ii.) ∃ an indirect exit point, m2, of s such that m.post ⇒ m2.pre
and ∃ a data item, d, such that d ∈ Res(m.post)∧d ∈ Res(m2.pre) (Figure 1.7.c and
Figure 1.7.d).

The set of exit points of s is the union of the set of direct exit points and the set
of indirect exit points of s.

1.3.5 Channels

An attacker uses a system’s channels to connect to the system and invoke a system’s
methods. Hence a system’s channels act as another basis for attacks on the system.
An entity in the environment can invoke a method, m, of a system, s, by using a
channel, c, of s; hence in our I/O automata model, c appears in the pre condition
of a direct entry point (or exit point), m, i.e., c ∈ Res(m.pre). In our model, every
channel of s must appear in the pre condition of at least one direct entry point (or
exit point) of s. Similarly, at least one channel must appear in the pre condition of
every direct entry point (or direct exit point).

1.3.6 Untrusted Data Items

The data store D is a collection of persistent and transient data items. The data items
that are visible to both a system, s, and the user U across s’s different executions
are s’s persistent data items. Specific examples of persistent data items are files,
cookies, database records, and registry entries. The persistent data items are shared
between s and U , hence U can use the persistent data items to send (receive) data
indirectly into (from) s. For example, s might read a file from the data store after U
writes the file to the data store. Hence the persistent data items act as another basis
for attacks on s. An untrusted data item of a system, s, is a persistent data item, d,
such that a direct entry point of s reads d from the data store or a direct exit point of
s writes d to the data store.

1 A Formal Model for a System’s Attack Surface 13

Definition 1.5. An untrusted data item of a system, s, is a persistent data item, d,
such that either (i.) ∃ a direct entry point, m, of s such that d ∈ Res(m.post), or (ii.)
∃ a direct exit point, m, of s such that d ∈ Res(m.pre).

Notice that an attacker sends (receives) the transient data items directly into
(from) s by invoking s’s direct entry points (direct exit points). Since s’s direct en-
try points (direct exit points) act as a basis for attacks on s, we do not consider the
transient data items as a different basis for attacks on s. The transient data items are
untrusted data items; they are, however, already ”counted” in our definition of direct
entry points and direct exit points.

1.3.7 Attack Surface Definition

A system’s attack surface is the subset of its resources that an attacker can use
to attack the system. An attacker can use a system’s entry points and exit points,
channels, and untrusted data items to send (receive) data into (from) the system to
attack the system. Hence the set of entry points and exit points, the set of channels,
and the set of untrusted data items are the relevant subset of resources that are part
of the attack surface.

Definition 1.6. Given a system, s, and its environment, Es, s’s attack surface is the
triple, 〈MEs ,CEs , IEs〉, where MEs is the set of entry points and exit points, CEs is the
set of channels, and IEs is the set of untrusted data items of s.

Notice that we define s’s entry points and exit points, channels, and data items
with respect to the given environment Es. Hence s’s attack surface, 〈MEs ,CEs , IEs〉,
is with respect to the environment Es. We compare the attack surfaces of two similar
systems (i.e., different versions of the same software or different software that pro-
vide similar functionality) along the methods, channels, and data dimensions with
respect to the same environment to determine if one has a larger attack surface than
another.

Definition 1.7. Given an environment, E=〈U,D, T 〉, the attack surface, 〈ME
A ,C

E
A, I

E
A 〉,

of a system, A, is larger than the attack surface, 〈ME
B ,C

E
B , I

E
B 〉, of a system, B iff ei-

ther (i.) ME
A ⊃ ME

B ∧ CE
A ⊇CE

B ∧ IE
A ⊇ IE

B , or (ii.) ME
A ⊇ ME

B ∧ CE
A ⊃CE

B ∧ IE
A ⊇ IE

B ,
or (iii.) ME

A ⊇ ME
B ∧ CE

A ⊇CE
B ∧ IE

A ⊃ IE
B .

1.3.8 Relation between Attack Surface and Potential Attacks

Consider a system, A, and its environment, EA = 〈U, D, T 〉. We model A’s inter-
action with the entities present in its environment as parallel composition, A||EA.
Notice that an attacker can send data into A by invoking A’s input actions and the at-
tacker can receive data from A when A executes its output actions. Since an attacker

14 Pratyusa K. Manadhata and Jeannette M. Wing

attacks a system either by sending data into the system or by receiving data from the
system, any schedule of the composition of A and EA that contains A’s input actions
or output actions is a potential attack on A. We denote the set of potential attacks on
s as attacks(A).

Definition 1.8. Given a system, s, and its environment, Es = 〈U, D, T 〉, a potential
attack on s is a schedule, β , of the composition, P = s ||U ||D ||(||t∈T t), such that
an input action (or output action), m, of s appears in β .

Note that s’s schedules may contain internal actions, but in order for a schedule
to be an attack, the schedule must contain at least one input action or output action.

We model an attacker by a set of attacks in our I/O automata model. In other
models of security, e.g., for cryptography, an attacker is modeled not just by a set of
attacks but also by its power and privilege [6]. Examples of an attacker’s power and
privilege are the attacker’s skill level (e.g., script kiddies, experts, and government
agencies) and the attacker’s resources (e.g., computing power, storage, and tools).
We, however, do not model the attacker’s power and privilege in our I/O automata
model. Hence our notion of attack surface is independent of the attacker’s power
and privilege and is dependent only on a system’s design and inherent properties.

We show that with respect to the same attacker and operating environment, if
a system, A, has a larger attack surface compared to a similar system, B, then the
number of potential attacks on A is larger than B. Since A and B are similar systems,
we assume both A and B have the same set of state variables and the same sets of
resources except the ones appearing in the attack surfaces.

Theorem 1.1. Given an environment,E =〈U, D,T 〉, if the attack surface,〈ME
A,C

E
A, I

E
A 〉,

of a system, A, is larger than the attack surface, 〈ME
B ,C

E
B , I

E
B 〉, of a system, B, then

the rest of the resources of A and B being equal attacks(A)⊃ attacks(B).

Proof. (Sketch)

• Case i: ME
A ⊃ ME

B ∧CE
A ⊇CE

B ∧ IE
A ⊇ IE

B
Without loss of generality, we assume that ME

A \ME
B = {m}. Consider the com-

positions PA = A ||U ||D || (||t∈T t) and PB = B ||U ||D ||(||t∈T t). Any method,
m ∈ ME

B , that is enabled in a state, sB, of B is also enabled in the correspond-
ing state sA of A and for any transition, 〈sB,m,s′B〉, of PB, there is a corre-
sponding transition, 〈sA,m,s′A〉, of PA. Hence for any schedule β ∈ attacks(B),
β ∈ attacks(A) and attacks(A)⊇ attacks(B).

– Case a: m is a direct entry point (or exit point) of A.
Since m is a direct entry point (or exit point), there is an output (or input)
action m of either U , D, or a system, t ∈ T . Hence there is at least one sched-
ule, β , of PA containing m. Moreover, β is not a schedule of PB as m /∈ ME

B .
Since β is a potential attack on A, β ∈ attacks(A)∧ β /∈ attacks(B). Hence
attacks(A)⊃ attacks(B).

– Case b: m is an indirect entry point (or exit point) of A.
Since m is an indirect entry point (or exit point) of A, there is a direct en-
try point (or exit point), mA, of A such that mA.post ⇒ m.pre (or m.post ⇒

1 A Formal Model for a System’s Attack Surface 15

mA.pre). Hence there is at least one schedule, β , of PA such that m follows
mA (or mA follows m) in β . Moreover, β is not an schedule of PB as m /∈ ME

B .
Since β is a potential attack on A, β ∈ attacks(A)∧ β /∈ attacks(B). Hence
attacks(A)⊃ attacks(B).

• Case ii: ME
A ⊇ ME

B ∧CE
A ⊃CE

B ∧ IE
A ⊇ IE

B
Without loss of generality, we assume that CE

A \CE
B = {c}. We know that c appears

in the pre condition of a direct entry point (or exit point), m ∈ ME
A . But c /∈ CE

B ,
hence m is never enabled in any state of B and m /∈ ME

B . Hence ME
A ⊃ ME

B and
from Case i, attacks(A)⊃ attacks(B).

• Case iii: ME
A ⊇ ME

B ∧CE
A ⊇CE

B ∧ IE
A ⊃ IE

B
The proof is similar to case ii.

Theorem 1.1 has practical significance in the software development process. The
theorem shows that if we create a software system’s newer version by only adding
more resources to an older version, then assuming all resources are counted equally
(see Section 1.4), the newer version has a larger attack surface and hence a larger
number of potential attacks. Software developers should ideally strive towards re-
ducing their software’s attack surface from one version to another or if adding re-
sources to the software (e.g., adding methods to an API), then do so knowingly that
they are increasing the attack surface.

1.4 Damage Potential and Effort

Not all resources contribute equally to the measure of a system’s attack surface be-
cause not all resources are equally likely to be used by an attacker. A resource’s
contribution to a system’s attack surface depends on the resource’s damage poten-
tial, i.e., the level of harm the attacker can cause to the system in using the resource
in an attack and the effort the attacker spends to acquire the necessary access rights
in order to be able to use the resource in an attack. The higher the damage potential
or the lower the effort, the higher the contribution to the attack surface. In this sec-
tion, we use our I/O automata model to formalize the notions of damage potential
and effort. We model the damage potential and effort of a resource, r, of a system,
s, as the state variables r.d p and r.e f , respectively.

In practice, we estimate a resource’s damage potential and effort in terms of
the resource’s attributes. Examples of attributes are method privilege, access rights,
channel protocol, and data item type. Our estimation method is a specific instanti-
ation of our general measurement framework. Our estimation of damage potential
includes only technical impact (e.g., privilege elevation) and not business impact
(e.g., monetary loss) though our framework does not preclude this generality. We do
not make any assumptions about the attacker’s capabilities or resources in estimat-
ing damage potential or effort.

We estimate a method’s damage potential in terms of the method’s privilege. An
attacker gains the privilege of a method by using the method in an attack. For exam-

16 Pratyusa K. Manadhata and Jeannette M. Wing

ple, the attacker gains root privilege by exploiting a buffer overflow in a method
running as root. The attacker can cause damage to the system after gaining root
privilege. The attacker uses a system’s channels to connect to a system and send (re-
ceive) data to (from) a system. A channel’s protocol imposes restrictions on the data
exchange allowed using the channel, e.g., a TCP socket allows raw bytes to be
exchanged whereas an RPC endpoint does not. Hence we estimate a channel’s
damage potential in terms of the channel’s protocol. The attacker uses persistent data
items to send (receive) data indirectly into (from) a system. A persistent data item’s
type imposes restrictions on the data exchange, e.g., a file can contain executable
code whereas a registry entry can not. The attacker can send executable code
into the system by using a file in an attack, but the attacker can not do the same
using a registry entry. Hence we estimate a data item’s damage potential in
terms of the data item’s type. The attacker can use a resource in an attack if the
attacker has the required access rights. The attacker spends effort to acquire these
access rights. Hence for the three kinds of resources, i.e., method, channel, and data,
we estimate the effort the attacker needs to spend to use a resource in an attack in
terms of the resource’s access rights.

We assume that we have a total ordering, , among the values of each of the
six attributes, i.e., method privilege and access rights, channel protocol and access
rights, and data item type and access rights. In practice, we impose these total order-
ings using our knowledge of a system and its environment. For example, an attacker
can cause more damage to a system by using a method running with root privi-
lege than a method running with non-root privilege; hence root non-root.
We use these total orderings to compare the contributions of resources to the attack
surface. Abusing notation, we write r1 r2 to express that a resource, r1, makes a
larger contribution to the attack surface than a resource, r2.

Definition 1.9. Given two resources, r1 and r2, of a system, A, r1 r2 iff either
(i.) r1.d p r2.d p ∧ r2.e f r1.e f , or (ii.) r1.d p = r2.d p ∧ r2.e f r1.e f , or (iii.)
r1.d p r2.d p ∧ r2.e f = r1.e f .

Definition 1.10. Given two resources, r1 and r2, of a system, A, r1 � r2 iff either (i.)
r1 r2 or (ii.) r1.d p = r2.d p ∧ r2.e f = r1.e f .

1.4.1 Modeling Damage Potential and Effort

In our I/O automata model, we use an action’s pre and post conditions to formalize
effort and damage potential, respectively. We present a parametric definition of an
action, m, of a system, s, below. For simplicity, we assume that the entities in the
environment connect to s using only one channel, c, to invoke m and m either reads
or writes only one data item, d.

m(MA,CA,DA,MB,CB,DB)
pre : Ppre ∧ MA � m.e f ∧ CA � c.e f ∧ DA � d.e f

1 A Formal Model for a System’s Attack Surface 17

post : Ppost ∧ MB � m.d p ∧ CB � c.d p ∧ DB � d.d p

The parameters MA, CA, and DA represent the highest method access rights,
channel access rights, and data access rights acquired by an attacker so far, respec-
tively. Similarly, the parameters MB, CB, and DB represent the benefit to the attacker
in using the method m, the channel c, and the data item d in an attack, respectively.
Rpre is the part of m’s pre condition that does not involve access rights. The clause,
MA � m.e f , captures the condition that the attacker has the required access rights to
invoke m; the other two clauses in the pre condition are analogous. Similarly, Rpost is
the part of m’s post condition that does not involve benefit. The clause, MB � m.d p,
captures the condition that the attacker gets the expected benefit after the execution
of m; the rest of the clauses are analogous.

We use the total orderings among the values of the attributes to define the
notion of weaker (and stronger) pre conditions and post conditions. We first intro-
duce a predicate, 〈m1,c1,d1〉 at 〈m2,c2,d2〉, to compare the values of an attribute,
at ∈ {d p,e f}, of the two triples, 〈m1,c1,d1〉 and 〈m2,c2,d2〉. We later use the pred-
icate to compare pre and post conditions.

Definition 1.11. Given two methods, m1 and m2, two channels, c1 and c2, two data
items, d1 and d2, and an attribute, at ∈ {d p,e f}, 〈m1,c1,d1〉 at 〈m2,c2,d2〉 iff
either (i.) m1.at m2.at ∧ c1.at � c2.at ∧ d1.at � d2.at, or (ii.) m1.at � m2.at ∧
c1.at c2.at ∧ d1.at � d2.at or (iii.) m1.at � m2.at ∧ c1.at � c2.at ∧ d1.at d2.at.

Consider two methods, m1 and m2. We say that m1 has a weaker pre condition
than m2 iff (m1.Rpre = m2.Rpre) ∧ (m2.pre ⇒ m1.pre). We only compare the parts
of the pre conditions involving the access rights and assume that the rest of the pre
conditions are the same for both m1 and m2. Notice that if m1 has a lower access
rights level than m2, i.e., m2.e f m1.e f , then for all access rights levels MA, (MA�
m2.e f)⇒ (MA � m1.e f); the rest of the clauses in the pre conditions are analogous.
Hence we define the notion of weaker pre condition as follows.

Definition 1.12. Given the pre condition, m1.pre = (Rpre∧ MA � m1.e f ∧CA �
c1.e f ∧DA � d1.e f), of a method, m1, and the pre condition, m2.pre=(Rpre∧MA�
m2.e f ∧ CA � c2.e f ∧DA � d2.e f), of a method, m2, m2.pre⇒m1.pre if 〈m2,c2,d2〉
e f 〈m1,c1,d1〉.

We say that m1 has a weaker post condition than m2 iff (m1.Rpost = m2.Rpost) ∧
(m1.post ⇒ m2.post).

Definition 1.13. Given the post condition, m1.post =(Rpost ∧ MB � m1.d p∧CB �
c1.d p ∧ DB� d1.d p), of a method, m1 and the post condition, m2.post =(Rpost ∧MB
�m2.d p ∧CB � c2.d p∧DB � d2.d p), of a method, m2, m1.post ⇒ m2.post if
〈m1,c1,d1〉 d p 〈m2,c2,d2〉.

18 Pratyusa K. Manadhata and Jeannette M. Wing

1.4.2 Attack Surface Measurement

Given two systems, A and B, if A has a larger attack surface than B (Definition
1.7), then everything else being equal, it is easy to see that A has a larger attack
surface measurement than B. It is also possible that even though A and B both have
the same attack surface, if a resource, A.r, belonging to A’a attack surface makes
a larger contribution than the same-named resource, B.r, belonging to B’s attack
surface, then everything else being equal A has a larger attack surface measurement
than B.

Given the attack surface, 〈ME
A ,C

E
A , I

E
A 〉, of a system, A, we denote the set of re-

sources belonging to A’s attack surface as RA = ME
A ∪CE

A ∪ IE
A . Note that from Defi-

nition 1.7, if A has a larger attack surface than B, then RA ⊃ RB.

Definition 1.14. Given an environment, E= 〈U, D, T〉, the attack surface,〈M E
A ,C

E
A , I

E
A 〉,

of a system, A, and the attack surface, 〈ME
B ,C

E
B , I

E
B 〉, of a system, B, A has a larger

attack surface measurement than B (A � B) iff either

1. A has a larger attack surface than B (i.e., RA ⊃ RB) and ∀r ∈ RB.A.r � B.r, or
2. ME

A = ME
B ∧ CE

A = CE
B ∧ IE

A = IE
B (i.e., RA = RB) and there is a nonempty set,

RAB ⊆RB, of resources such that ∀r ∈RAB.A.r B.r and ∀r ∈ (RB\RAB).A.r =
B.r.

From Definitions 1.7 and 1.14, � is transitive. For example, given three systems,
A, B, and C, if A has a larger attack surface measurement than B and B has a larger
attack surface measurement than C, then A has a larger attack surface measurement
than C.

Theorem 1.2. Given an environment, E = 〈U, D, T 〉, the attack surface, RA, of a
system, A, the attack surface, RB, of a system, B, and the attack surface, C, of a
system, RC, if A � B and B �C, then A �C.

Proof. (Sketch) From Definition 1.14, A’s attack surface measurement can be larger
than B’s in two different ways. Similarly, B’s attack surface measurement can be
larger than C’s in two different ways. Hence we consider four different cases in
proving the theorem.

• Case 1: RA ⊃ RB and ∀r ∈ RB.A.r � B.r.

– Case 1.1: RB ⊃ RC and ∀r ∈ RC.B.r �C.r.
Since RA ⊃RB and RB ⊃RC, RA ⊃RC. Also, since RB ⊃RC and ∀r ∈RB.A.r �
B.r, ∀r ∈ RC.A.r � B.r. From the assumptions of Case 1.1, ∀r ∈ RC.B.r �C.r.
Hence ∀r ∈ RC.A.r � B.r �C.r. Hence A �C.

– Case 1.2: RB = RC and there is a nonempty set, RBC ⊆ RC, of resources such
that ∀r ∈ RBC.B.r C.r and ∀r ∈ (RC \RBC).B.r =C.r.
Since RA ⊃ RB and RB = RC, RA ⊃ RC. Consider a resource, r ∈ RC. From the
assumptions of Case 1.2, if r ∈ RBC, then B.r C.r, and if r ∈ (RC \RBC),
then B.r =C.r. Hence ∀r ∈ RC.B.r �C.r. Also, from the assumptions of Case
1, ∀r ∈ RB.A.r � B.r. Since RB = RC, ∀r ∈ RC.A.r � B.r �C.r. Hence A �C.

1 A Formal Model for a System’s Attack Surface 19

• Case 2: RA = RB and there is a nonempty set, RAB ⊆ RB, of resources such that
∀r ∈ RAB.A.r B.r and ∀r ∈ (RB \RAB).A.r = B.r.

– Case 2.1: RB ⊃ RC and ∀r ∈ RC.B.r �C.r.
The proof is similar to Case 1.2.

– Case 2.2: RB = RC and there is a nonempty set, RBC ⊆ RC, of resources such
that ∀r ∈ RBC.B.r C.r and ∀r ∈ (RC \RBC).B.r =C.r.
Since RA = RB and RB = RC, RA = RC. Consider the set, RAC = RAB∪RBC,
of resources. We shall prove that ∀r ∈ RAC.A.r C.r. Consider a resource,
r ∈ RAC. If r ∈ RAB ∩RBC, then A.r B.r C.r. If r ∈ RAB \RBC, then
A.r B.r = C.r. Similarly, if r ∈ RBC \RAB, then A.r = B.r C.r. Hence
∀r ∈ RAC.A.r C.r. Also, from the assumptions of Case 2 and Case 2.2,
∀r ∈ RC \RAC.A.r =C.r. Hence A �C.

The transitivity of � has practical implications for attack surface reduction;
while reducing A’s attack surface measurement compared to C’s, software devel-
opers should focus on the set RAC of resources instead of either the set RAB or the
set RBC.

1.4.3 Relation Between Attack Surface Measurement and Potential
Attacks

We show that with respect to the same attacker and operating environment, if a
system, A, has a larger attack surface measurement compared to a system, B, then
the number of potential attacks on A is larger than B.

Theorem 1.3. Given an environment, E = 〈U, D, T 〉, if the attack surface of a
system A is the triple 〈ME

A ,C
E
A , I

E
A 〉, the attack surface of of a system, B, is the

triple 〈ME
B ,C

E
B ,I

E
B 〉, and A has a larger attack surface measurement than B, then

attacks(A)⊇ attacks(B).

Proof. (Sketch)

• Case 1: This is a corollary of Theorem 1.1.
• Case 2: ME

A = ME
B ∧ CE

A =CE
B ∧ IE

A = IE
B

Without loss of generality, we assume that R = {r} and A.r B.r.

– Case i: (B.r).e f (A.r).e f ∧ (A.r).d p (B.r).d p
From definitions 1.12 and 1.13, there is an action, mA ∈ ME

A , that has a weaker
precondition and a stronger post condition than the same-named action, mB ∈
ME

B , i.e.,
(mB.pre ⇒ mA.pre)∧ (mA.post ⇒ mB.post). (1.1)

Notice that any schedule of the composition PB (as defined in the proof sketch
of Theorem 1.1) that does not contain mB is also a schedule of the composition

20 Pratyusa K. Manadhata and Jeannette M. Wing

PA. Now consider a schedule, β , of PB that contains mB and the following
sequence of actions that appear in β :..m1mBm2... Hence,

(m1.post ⇒ mB.pre)∧ (mB.post ⇒ m2.pre). (1.2)

From equations (1) and (2), (m1.post ⇒ mB.pre ⇒ mA.pre)∧ (mA.post ⇒
mB.post ⇒m2.pre). Hence, (m1.post ⇒mA.pre)∧ (mA.post ⇒m2.pre). That
is, we can replace the occurrences of mB in β with mA. Hence β is also a
schedule of the composition PA and attacks(A)⊇ attacks(B).

– Case ii and Case iii: The proof is similar to Case i.

Theorem 1.3 also has practical significance in the software development process.
The theorem shows that if software developers modify the values of a resource’s
attributes and hence increase the resource’s damage potential and/or decrease the
resource’s effort in their software’s newer version, then all else being the same be-
tween the two versions, the newer version’s attack surface measurement becomes
larger and the number of potential attacks on the software increases.

1.5 A Quantitative Metric

In the previous section, we introduced a qualitative measure of a system’s attack
surface (Definition 1.14). The qualitative measure is an ordinal scale [5]; given two
systems, we can only determine if one system has a relatively larger attack surface
measurement than another. We, however, can not quantify the difference in the mea-
surements.

We need a quantitative measure of the attack surface to quantify the difference in
the attack surface measurements. We can also measure the absolute attack surface
using the quantitative measure. In this section, we introduce a quantitative measure
of the attack surface; the measure is a ratio scale. We quantify a resource’s contri-
bution to the attack surface in terms of a damage potential-effort ratio.

1.5.1 Damage Potential-Effort Ratio

In the previous section, in estimating a resource’s contribution to the attack sur-
face, we consider the resource’s damage potential and effort in isolation. From an
attacker’s point of view, however, damage potential and effort are related; if the
attacker gains higher privilege by using a method in an attack, then the attacker
also gains the access rights of a larger set of methods. For example, the attacker
can access only the methods with authenticated user access rights by gain-
ing authenticated privilege, whereas the attacker can access methods with
authenticated user and root access rights by gaining root privilege. The
attacker might be willing to spend more effort to gain a higher privilege level that

1 A Formal Model for a System’s Attack Surface 21

then enables the attacker to cause damage as well as gain more access rights. Hence
we consider a resource’s damage potential and effort in tandem and quantify a re-
source’s contribution to the attack surface as a damage potential-effort ratio. The
damage potential-effort ratio is similar to a cost-benefit ratio; the damage potential
is the benefit to the attacker in using a resource in an attack and the effort is the cost
to the attacker in using the resource.

We assume a function, derm: method → Q, that maps each method to its dam-
age potential-effort ratio belonging to the set, Q, of rational numbers. Similarly, we
assume a function, derc: channel → Q, for the channels and a function, derd : data
item →Q, for the data items. In practice, however, we compute a resource’s damage
potential-effort ratio by assigning numeric values to the resource’s attributes. For
example, we compute a method’s damage potential-effort ratio from the numeric
values assigned to the method’s privilege and access rights. We assign the numeric
values according to the total orderings imposed on the attributes and based on our
knowledge of a system and its environment. For example, we assume a method run-
ning as root has a higher damage potential than a method running as non-root
user; hence root > non-root user in the total ordering and we assign a higher
number to root than non-root user. The exact choice of the numeric values is
subjective and depends on a system and its environment. Hence we cannot auto-
mate the process of numeric value assignment. We, however, provide guidelines to
our users for numeric value assignment using parameter sensitivity analysis [20].

In terms of our formal I/O automata model, a method, m’s, damage potential
determines how strong m’s post condition is. m’s damage potential determines the
potential number of methods that m can call and hence the potential number of meth-
ods that can follow m in a schedule; the higher the damage potential, the larger the
number of methods. Similarly, m’s effort determines the potential number of meth-
ods that can call m and hence the potential number of methods that m can follow in
a schedule; the lower the effort, the larger the number of methods. Hence m’s dam-
age potential-effort ratio, derm(m), determines the potential number of schedules in
which m can appear. Given two methods, m1 and m2, if derm(m1)> derm(m2) then
m1 can potentially appear in more schedules (and hence more potential attacks) than
m2. Similarly, if a channel, c, (or a data item, d) appears in the pre condition of a
method, m, then the damage potential-effort ratio of c (or d) determines the poten-
tial number of schedules in which m can appear. Hence we estimate a resource’s
contribution to the attack surface as the resource’s damage potential-effort ratio.

1.5.2 Quantitative Attack Surface Measurement Method

We quantify a system’s attack surface measurement along three dimensions: meth-
ods, channels, and data. We estimate the total contribution of the methods, the total
contribution of the channels, and the total contribution of the data items to the attack
surface.

22 Pratyusa K. Manadhata and Jeannette M. Wing

Definition 1.15. Given the attack surface, 〈MEs ,CEs , IEs〉, of a system, s, s’s attack
surface measurement is the triple 〈 ∑

m∈MEs
derm(m), ∑

c∈CEs
derc(c), ∑

d∈IEs
derd(d)〉.

We quantitatively measure a system’s attack surface in the following three steps.

1. Given a system, s, and its environment, Es, we identify a set, MEs , of entry points
and exit points, a set, CEs , of channels, and a set, IEs , of untrusted data items of
s.

2. We estimate the damage potential-effort ratio, derm(m), of each method m ∈
MEs , the damage potential-effort ratio, derc(c), of each channel c ∈CEs , and the
damage potential-effort ratio, derd(d), of each data item d ∈ IEs .

3. The measure of s’s attack surface is 〈 ∑
m∈MEs

derm(m), ∑
c∈CEs

derc(c), ∑
d∈ IEs

derd(d)〉.

Our measurement method is analogous to the risk estimation method used in risk
modeling [9]. A system’s attack surface measurement is an indication of the sys-
tem’s risk from attacks on the system. In risk modeling, the risk associated with a
set, E, of events is ∑e∈E p(e)C(e) where an event, e’s, probability of occurrence
is p(e) and consequence is C(e). The events in risk modeling are analogous to a
system’s resources in our measurement method. The probability of occurrence of
an event is analogous to the probability of a successful attack on the system using a
resource; if the attack is not successful, then the attacker does not benefit from the at-
tack. For example, a buffer overrun attack using a method, m, will be successful only
if m has an exploitable buffer overrun vulnerability. Hence the probability, p(m), as-
sociated with a method, m, is the probability that m has an exploitable vulnerability.
Similarly, the probability, p(c), associated with a channel, c, is the probability that
the method that receives (or sends) data from (to) c has an exploitable vulnerability
and the probability, p(d), associated with a data item, d, is the probability that the
method that reads or writes d has an exploitable vulnerability. The consequence of
an event is analogous to a resource’s damage potential-effort ratio. The pay-off to
the attacker in using a resource in an attack is proportional to the resource’s damage
potential-effort ratio; hence the damage potential-effort ratio is the consequence of
a resource being used in an attack. The risk along s’s three dimensions is the triple,
〈 ∑

m∈MEs
p(m)derm(m), ∑

c∈CEs
p(c)derc(c), ∑

d∈ IEs
p(d) derd(d)〉, which is also the

measure of s’s attack surface.
In practice, however, it is difficult to predict defects in software [4] and to esti-

mate the likelihood of vulnerabilities in software [8]. Hence we take a conservative
approach in our attack surface measurement method and assume that p(m) = 1 for
all methods, i.e., every method has an exploitable vulnerability. We assume that
even if a method does not have a known vulnerability now, it might have a future
vulnerability not discovered so far. We similarly assume that p(c) = 1 for all chan-
nels and p(d) = 1 for all data items. With our conservative approach, the measure of
s’s attack surface is the triple 〈 ∑

m∈MEs
derm(m), ∑

c∈CEs
derc(c), ∑

d∈ IEs
derd(d)〉.

Given two similar systems, A and B, we compare their attack surface measure-
ments along each of the three dimensions to determine if one system is more secure

1 A Formal Model for a System’s Attack Surface 23

than another along that dimension. There is, however, a seeming contradiction in our
measurement method with our intuitive notion of security. For example, consider a
system, A, that has 1000 entry points each with a damage potential-effort ratio of 1
and a system, B, that has only one entry point with a damage potential-effort ratio
of 999. A has a larger attack surface measurement whereas A is intuitively more
secure. This contradiction is due to the presence of extreme events, i.e., events that
have a significantly higher consequence compared to other events [9]. An entry point
with a damage potential-effort ratio of 999 is analogous to an extreme event. In the
presence of extreme events, the shortcomings of the risk estimation method used
in the previous paragraph is well understood and the partitioned multiobjective risk
method is recommended [2]. In our attack surface measurement method, however,
we compare the attack surface measurements of similar systems, i.e., systems with
comparable sets of resources and comparable damage potential-effort ratios of the
resources; hence we do not expect extreme events such as the example shown to
arise in practice.

1.6 Empirical Results

In this section, we briefly discuss our empirical attack surface measurements and
exploratory validation studies. Our discussion focuses on the reasons behind each
study; please see Manadhata and Wing for details about the studies [21].

1.6.1 Attack Surface Measurement Results

We introduced an abstract attack surface measurement method in the previous sec-
tion. We instantiated the method for software implemented in the C programming
language and demonstrated that our method is applicable to real world software.
We measured the attack surfaces of two open source IMAP servers: Courier-IMAP
4.0.1 and Cyrus 2.2.10; we chose the IMAP servers due to their popularity. We con-
sidered only the code specific to the IMAP daemon in our measurements to obtain
a fair comparison. The Courier and the Cyrus code bases contain nearly 33K and
34K lines of code specific to the IMAP daemon, respectively. We also measured the
attack surfaces of two open source FTP daemons: ProFTPD 1.2.10 and Wu-FTPD
2.6.2. The ProFTP codebase contains 28K lines of C code and the Wu-FTP codebase
contains 26K lines of C code. The measurement results conformed to our intuition.
For example, the ProFTP project grew out of the Wu-FTP project and was designed
and implemented from the ground up to be a more secure and configurable FTP
server. Our measurements showed that ProFTPD is more secure than Wu-FTPD
along the method dimension.

24 Pratyusa K. Manadhata and Jeannette M. Wing

1.6.2 Validation Studies

A key challenge in security metrics research is the validation of a metric. Validating
a software attribute’s measure is hard in general [14]; security is a software attribute
that is hard to measure and hence even harder to validate. To validate our metric, we
conducted three exploratory empirical studies inspired by the software engineering
research community’s software metrics validation approaches [5].

In practice, validation approaches are based on distinguishing measures from
prediction systems; measures are used to numerically characterize software at-
tributes whereas prediction systems are used to predict software attributes’ values.
For example, lines of code (LOC) is a measure of software “length;” the measure
becomes a prediction system if we use LOC to predict software “complexity.” A
software measure is validated by establishing that the measure is a proper numer-
ical characterization of an attribute. Similarly, prediction systems are validated by
establishing their accuracy via empirical means.

Our attack surface metric plays a dual role: the metric is a measure of a software
attribute, i.e., the attack surface and also a prediction system to indicate the secu-
rity risk of software. Hence we took a two-step approach for validation. First, we
validated the measure by validating our attack surface measurement method. Sec-
ond, we validated the prediction system by validating attack surface measurement
results.

We conducted two empirical studies to validate our measurement method: a sta-
tistical analysis of data collected from Microsoft Security Bulletins and an expert
user survey. Our approach is motivated by the notion of convergent evidence in Psy-
chology [10]; since each study has its own strengths and weaknesses, the conver-
gence in the studies’ findings enhances our belief that the findings are valid and not
methodological artifacts. Also, the statistical analysis is with respect to Microsoft
Windows whereas the expert survey is with respect to Linux. Hence our validation
approach is agnostic to operating system and system software.

We validated our metric’s prediction system by establishing a positive correla-
tion between attack surface measurements and software’s security risk. First, we
formally showed that a larger attack surface leads to a larger number of potential
attacks on software in the I/O automata model (Section 1.3.8 and Section 1.4.3).
Second, we established a relationship between attack surface measurements and se-
curity risk by analyzing vulnerability patches in open source software. A vulnerabil-
ity patch reduces a system’s security risk by removing an exploitable vulnerability
from the system; hence we expect the patch to reduce the system’s attack surface
measurement. We demonstrated that a majority of patches in open source software,
e.g., Firefox and ProFTP server, reduce the attack surface measurement. Third, we
gathered anecdotal evidence from software industry to show that attack surface re-
duction mitigates security risk; for example, the Sasser worm, the Zotob worm, and
the Nachi worm did not affect some versions of Windows due to reduction in their
attack surfaces [13].

1 A Formal Model for a System’s Attack Surface 25

1.6.3 SAP Software Systems

Our C measurements focused on software that are small in their code size and sim-
ple in their architectural design. We collaborated with SAP, the world’s largest en-
terprise software company, to apply our method to SAP’s enterprise-scale software
implemented in Java. Our motivation behind the collaboration was two-fold. First,
we wanted to demonstrate that our method scales to enterprise-scale software and
is agnostic to implementation language. Second, we had the opportunity to inter-
act closely with SAP’s software developers and architects and get their feedback on
improving our measurement method.

We instantiated our abstract measurement method for the Java programming
language and implemented a tool to measure the attack surfaces of SAP software
implemented in Java. We applied our method to three versions of a core SAP
component. The measurement results conformed to the three versions’ perceived
relative security. We also identified multiple uses of attack surface measurements in
the software development process. For example, attack surface measurements are
useful in the design and development phase to mitigate security risk, in the testing
and code inspection phase to guide manual effort, in the deployment phase to choose
a secure configuration, and in the maintenance phase to guide vulnerability patch
implementation.

1.7 Related Work

Our attack surface metric differs from prior work in three key aspects. First, our
attack surface measurement is based on a system’s inherent properties and is in-
dependent of any vulnerabilities present in the system. Previous work assumes the
knowledge of the known vulnerabilities present in the system [1, 30, 25, 27, 23, 15].
In contrast, our identification of all entry points and exit points encompasses all
known vulnerabilities as well as potential vulnerabilities not yet discovered or ex-
ploited. Moreover, a system’s attack surface measurement indicates the security risk
of the exploitation of the system’s vulnerabilities; hence our metric is complemen-
tary to and can be used in conjunction with previous work.

Second, prior research on measurement of security has taken an attacker-centric
approach [25, 27, 23, 15]. In contrast, we take a system-centric approach. The
attacker-centric approach makes assumptions about attacker capabilities and re-
sources whereas the system-centric approach assesses a system’s security without
reference to or assumptions about attacker capabilities [24]. Our attack surface mea-
surement is based on a system’s design and is independent of the attacker’s capabil-
ities and behavior; hence our metric can be used as a tool in the software design and
development process.

Third, many of the prior works on quantification of security are conceptual in
nature and haven’t been applied to real software systems [1, 17, 15, 19, 26]. In con-
trast, we demonstrate the applicability of our metric to real systems by measuring

26 Pratyusa K. Manadhata and Jeannette M. Wing

the attack surfaces of two FTP servers, two IMAP servers, and three versions of an
SAP software system.

Alves-Foss et al. use the System Vulnerability Index (SVI)–obtained by evalu-
ating factors such as system characteristics, potentially neglectful acts, and poten-
tially malevolent acts–as a measure of a system’s vulnerability [1]. They, however,
identify only the relevant factors of operating systems; their focus is on operating
systems and not individual or generic software applications. Moreover, they assume
that they can quantify all the factors that determine a system’s SVI. In contrast, we
assume that we can quantify a resource’s damage potential and effort.

Littlewood et al. explore the use of probabilistic methods used in traditional reli-
ability analysis in assessing the operational security of a system [17]. In their con-
ceptual framework, they propose to use the effort made by an attacker to breach a
system as an appropriate measure of the system’s security. They, however, do not
propose a concrete method to estimate the attacker effort.

Voas et al. propose a relative security metric based on a fault injection technique
[30]. They propose a Minimum-Time-To-Intrusion (MTTI) metric based on the pre-
dicted period of time before any simulated intrusion can take place. The MTTI
value, however, depends on the threat classes simulated and the intrusion classes
observed. In contrast, the attack surface metric does not depend on any threat class.
Moreover, the MTTI computation assumes the knowledge of system vulnerabilities.

Ortalo et al. model a system’s known vulnerabilities as a privilege graph [3] and
combine assumptions about the attacker’s behavior with the privilege graphs to ob-
tain attack state graphs [25]. They analyze the attack state graphs using Markov
techniques to estimate the effort an attacker might spend to exploit the vulnerabil-
ities; the estimated effort is a measure of the system’s security. Their technique,
however, assumes the knowledge of the system’s vulnerabilities and the attacker’s
behavior. Moreover, their approach focuses on assessing the operational security of
operating systems and not individual software applications.

Schneier uses attack trees to model the different ways in which a system can be
attacked [27]. Given an attacker goal, Schneier constructs an attack tree to identify
the different ways in which the goal can be satisfied and to determine the cost to
the attacker in satisfying the goal. The estimated cost is a measure of the system’s
security. Construction of an attack tree, however, assumes the knowledge of the fol-
lowing three factors: system vulnerabilities, possible attacker goals, and the attacker
behavior.

McQueen et al. use an estimate of a system’s expected time-to-compromise
(TTC) as an indicator of the system’s security risk [23]. TTC is the expected time
needed by an attacker to gain a privilege level in a system; TTC, however, depends
on the system’s vulnerabilities and the attacker’s skill level.

1 A Formal Model for a System’s Attack Surface 27

1.8 Summary and Future Work

There is a pressing need for practical security metrics and measurements today. In
this chapter, we formalized the notion of a system’s attack surface and introduced
a systematic method to measure it. Our pragmatic attack surface measurement ap-
proach is useful to both software developers and software consumers.

Our formal model can be extended in two directions. First, we do not make any
assumptions about an attacker’s resources, capabilities, and behavior in our I/O au-
tomata model. In terms of an attacker profile used in cryptography, we do not char-
acterize an attacker’s power and privilege. A useful extension of our work would be
to include an attacker’s power and privilege in our formal I/O automata model.

Second, our I/O automata model is not expressive enough to include attacks such
as side channel attacks, covert channel attacks, and attacks where one user of a soft-
ware system can affect other users (e.g., fork bombs). We could extend the current
formal model by extending our formalization of damage potential and attacker effort
to include such attacks.

We view our work as a first step in the grander challenge of security metrics.
We believe that no single security metric or measurement will be able to fulfill
our requirements. We certainly need multiple metrics and measurements to quantify
different aspects of security. We also believe that our understanding over time would
lead us to more meaningful and useful quantitative security metrics.

References

1. J. Alves-Foss and S. Barbosa. Assessing computer security vulnerability. ACM SIGOPS
Operating Systems Review, 29(3), 1995.

2. E. Asbeck and Y. Y. Haimes. The partitioned multiobjective risk method. Large Scale Systems,
6(1):13–38, 1984.

3. M. Dacier and Y. Deswarte. Privilege graph: An extension to the typed access matrix model.
In Proc. of European Symposium on Research in Computer Security, 1994.

4. N. E. Fenton and M. Neil. A critique of software defect prediction models. IEEE Transactions
on Software Engineering, 25(5), 1999.

5. Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous and Practical
Approach. PWS Publishing Co., Boston, MA, USA, 1998.

6. Virgil D. Gligor. Personal communication, 2008.
7. Seymour E. Goodman and Herbert S. Lin, editors. Toward a Safer and More Secure Cy-

berspace. The National Academics Press, 2007.
8. R. Gopalakrishna, E. Spafford, , and J. Vitek. Vulnerability likelihood: A probabilistic ap-

proach to software assurance. Technical Report 2005-06, CERIAS, Purdue Univeristy, 2005.
9. Y. Y. Haimes. Risk Modeling, Assessment, and Management. Wiley, 2004.

10. Curtis P. Haugtvedt, Paul M. Herr, and Frank R. Kardes, editors. Handbook of Consumer
Psychology. Psychology Press, 2008.

11. M. Howard, J. Pincus, and J.M. Wing. Measuring relative attack surfaces. In Proc. of Work-
shop on Advanced Developments in Software and Systems Security, 2003.

12. Michael Howard. Fending off future attacks by reducing attack surface. http:
//msdn.microsoft.com/library/default.asp?url=/library/en-us/
dncode/html/secure02132003.asp, 2003.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure02132003.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure02132003.asp

28 Pratyusa K. Manadhata and Jeannette M. Wing

13. Michael Howard. Personal communication, 2005.
14. Barbara Kitchenham, Shari Lawrence Pfleeger, and Norman Fenton. Towards a framework for

software measurement validation. IEEE Transactions on Software Engineering, 21(12):929–
944, 1995.

15. David John Leversage and Eric James Byres. Estimating a system’s mean time-to-
compromise. IEEE Security and Privacy, 6(1), 2008.

16. Jason Levitt. Windows 2000 security represents a quantum leap. http://www.
informationweek.com/834/winsec.htm, April 2001.

17. B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page, D. Wright, J. Dobson J. Mc-
Dermid, and D. Gollman. Towards operational measures of computer security. Journal of
Computer Security, 2(2/3):211–230, 1993.

18. N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-Quarterly, 2(3),
September 1989.

19. Bharat B. Madan, Katerina Goseva-Popstojanova, Kalyanaraman Vaidyanathan, and Kishor S.
Trivedi. Modeling and quantification of security attributes of software systems. In DSN, pages
505–514, 2002.

20. Pratyusa K. Manadhata. An Attack Surface Metric. PhD thesis, Carnegie Mellon University,
December 2008.

21. Pratyusa K. Manadhata and Jeannette M. Wing. An attack surface metric. IEEE Transactions
on Software Engineering, 99(PrePrints), 2010.

22. Gary McGraw. From the ground up: The DIMACS software security workshop. IEEE Security
and Privacy, 1(2):59–66, 2003.

23. Miles A. McQueen, Wayne F. Boyer, Mark A. Flynn, and George A. Beitel. Time-to-
compromise model for cyber risk reduction estimation. In ACM CCS Workshop on Quality of
Protection, September 2005.

24. David M. Nicol. Modeling and simulation in security evaluation. IEEE Security and Privacy,
3(5):71–74, 2005.

25. R. Ortalo, Y. Deswarte, and M. Kaâniche. Experimenting with quantitative evaluation tools
for monitoring operational security. IEEE Transactions on Software Engineering, 25(5), 1999.

26. Stuart Edward Schechter. Computer Security Strength & Risk: A Quantitative Approach. PhD
thesis, Harvard University, 2004.

27. Bruce Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal, 1999.
28. Sean W. Smith and Eugene H. Spafford. Grand challenges in information security: Process

and output. IEEE Security and Privacy, 2:69–71, 2004.
29. Rayford B. Vaughn, Ronda R. Henning, and Ambareen Siraj. Information assurance measures

and metrics - state of practice and proposed taxonomy. In Proc. of Hawaii International
Conference on System Sciences, 2003.

30. J. Voas, A. Ghosh, G. McGraw, F. Charron, and K. Miller. Defining an adaptive software secu-
rity metric from a dynamic software failure tolerance measure. In Proc. of Annual Conference
on Computer Assurance, 1996.

http://www.informationweek.com/834/winsec.htm
http://www.informationweek.com/834/winsec.htm

	Chapter 1 A Formal Model for a System’s Attack Surface
	1.1 Introduction
	1.1.1 Motivation
	1.1.2 Attack Surface Metric
	1.1.3 Roadmap

	1.2 Motivation
	1.2.1 Windows Measurements
	1.2.2 Linux Measurements

	1.3 I/O Automata Model
	1.3.1 I/O Automaton
	1.3.2 Model
	1.3.3 Entry Points
	1.3.4 Exit Points
	1.3.5 Channels
	1.3.6 Untrusted Data Items
	1.3.7 Attack Surface Definition
	1.3.8 Relation between Attack Surface and Potential Attacks

	1.4 Damage Potential and Effort
	1.4.1 Modeling Damage Potential and Effort
	1.4.2 Attack Surface Measurement
	1.4.3 Relation Between Attack Surface Measurement and Potential Attacks

	1.5 A Quantitative Metric
	1.5.1 Damage Potential-Effort Ratio
	1.5.2 Quantitative Attack Surface Measurement Method

	1.6 Empirical Results
	1.6.1 Attack Surface Measurement Results
	1.6.2 Validation Studies
	1.6.3 SAP Software Systems

	1.7 Related Work
	1.8 Summary and Future Work
	References

