
Efficient Submatch Extraction

for Practical Regular Expressions

Stuart Haber1, William Horne1,�, Pratyusa Manadhata1, Miranda Mowbray2,
and Prasad Rao1

1 HP Labs Princeton, 5 Vaughn Drive, Suite 301, Princeton, NJ 08540, USA
2 HP Labs Bristol, Long Down Ave, Stoke Gifford, Bristol BS34 8QT, UK

Abstract. A capturing group is a syntax used in modern regular expres-
sion implementations to specify a subexpression of a regular expression.
Given a string that matches the regular expression, submatch extraction
is the process of extracting the substrings corresponding to those subex-
pressions. Greedy and reluctant closures are variants on the standard
closure operator that impact how submatches are extracted. The state
of the art and practice in submatch extraction are automata based ap-
proaches and backtracking algorithms. In theory, the number of states
in an automata-based approach can be exponential in n, the size of the
regular expression, and the running time of backtracking algorithms can
be exponential in �, the length of the string. In this paper, we present an
O(�c) runtime automata based algorithm for extracting submatches from
a string that matches a regular expression, where c > 0 is the number
of capturing groups. The previous fastest automata based algorithm was
O(n�c). Both our approach and the previous fastest one require worst-
case exponential compile time. But in practice, the worst case behavior
rarely occurs, so achieving a practical speed-up against state-of-the-art
methods is of significant interest. Our experimental results show that,
for a large set of regular expressions used in practice, our algorithm is
approximately twice as fast as Java’s backtracking based regular expres-
sion library and approximately twenty times faster than the RE2 regular
expression engine.

1 Introduction

Regular expressions (REs) are a succinct method to formally represent sets of
strings over an alphabet. Given an RE and a string, the RE matches the string
if the string belongs to the set described by the RE. Many RE implementations
also support search, i.e. finding the first substring of an input string that matches
the RE. In this paper we only address matching, which has practical applications
in network security, bioinformatics, and other areas.

Most textbooks on compiler design and related topics (e.g. [4]) describe REs
from a theoretical perspective, but omit additional features including capturing

� Corresponding author.

A.-H. Dediu, C. Mart́ın-Vide, and B. Truthe (Eds.): LATA 2013, LNCS 7810, pp. 323–334, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

324 S. Haber et al.

groups and reluctant closure, that are supported in practical implementations of
REs, such as PCRE [3], Java [7], and RE2 [2].

A capturing group is a syntax used to specify a subexpression. Given a string
that matches the regular expression, submatch extraction is the process of ex-
tracting the substrings corresponding to those subexpressions. This feature en-
ables regular expressions to be used as parsers. Parentheses are commonly used
to indicate the beginning and end of a capturing group. For example, the RE
(.∗) = (.∗) could be used to parse key-value pairs. (Here, the meta-character ‘.’
matches any character in the alphabet, so that .∗ matches any string.)

The reluctant closure operator, denoted ∗?, appears in both Java and PCRE,
and is widely used in practice. This operator is a variant of the standard greedy
closure operator for REs, denoted ∗, with different submatching behavior: where
other rules do not apply, shorter submatches to a subexpression E∗? take priority
over longer ones, whereas for E∗ the reverse is true. For example, consider match-
ing the string a = b = c first against (.∗?)=(.∗), and then against (.∗)=(.∗?). In
the first case the capturing groups match a and b= c, respectively, while in the
second case the submatches are a=b and c.

If the two closure operators in this example are both greedy or both reluctant,
then it is ambiguous which of these two assignments of submatches should be
reported by a matching algorithm. There are no formal standards that specify
precedence rules for such cases. We aimed for consistency with Java’s implemen-
tation, which we verified with extensive testing.

Though REs are widely studied, the problem of efficiently implementing sub-
match extraction has not received much attention. The state of the art includes
backtracking and automata based approaches. Java, PCRE, Perl, Python, Ruby,
and many other tools implement submatch extraction using recursive backtrack-
ing, where an input string may be scanned multiple times before a match is found.
Pike implemented the first automata based submatch extraction algorithm in the
sam text editor [8] based on Thompson’s algorithm [10] for RE matching, which
converts the RE to a nondeterministic finite automaton (NFA). RE2 uses a com-
bination of deterministic finite automata (DFAs) and NFAs to improve the time
efficiency of submatch extraction [2]. RE2 uses DFAs to locate a RE’s overall
match location in an input string and then uses NFA-based matching on the
overall match to extract submatches. Laurikari [5,6] studied ways to implement
submatch extraction using a DFA. Both Pike’s and Laurikari’s implementations
require worst-case exponential time to construct the DFA. Once the DFA has
been constructed these implementations run in O(n�c) time, where n is the num-
ber of states in the NFA corresponding to a RE, � is the length of the string
being matched, and c > 0 is the number of capturing groups.

Our algorithm is suitable for settings where the automaton is compiled once
and matched many times against different input strings. This scenario is com-
mon, for example, in security applications such as intrusion detection systems
and event processing systems which rely heavily on REs and require high-speed
matching of input strings.

Efficient Submatch Extraction for Practical Regular Expressions 325

In this paper, we present an O(�c) runtime automata based algorithm for
RE matching and submatch extraction. The time complexity of the runtime
operation for our algorithm does not depend on n, but our algorithm may require
O(2n) compile time and storage space in the worst case.

However, the asymptotic analysis of these algorithms is deceiving. Backtrack-
ing and automata-based approaches almost never have the worst-case behavior
on REs that are used in practice. Thus, achieving a practical speed-up against
state-of-the-art methods is of significant interest. Our experimental results show
that, for a large set of regular expressions used in practice, our algorithm is ap-
proximately twice as fast as Java’s backtracking based regular expression library
and approximately twenty times faster than RE2.

2 Valid Submatch

For the purposes of this paper, the syntax of REs with capturing groups and
reluctant closures on an alphabet Σ is

E ::= ε | a | EE | E|E | E* | E*? | (E)

where a stands for an element of Σ, and ε is the empty string. The notation (E)

indicates a capturing group. If X,Y are sets of strings we use XY to denote
concatenation, i.e. XY = {xy : x ∈ X, y ∈ Y }, and X |Y to denote the union of
sets X and Y . If β is a string and B a set of symbols we use β|B to denote the
string in B∗ obtained by deleting from β all elements that are not in B.

Grouping terms is optional when the order of operations is clear. Specifically,
capturing groups have a higher priority than greedy and reluctant closures, which
have a higher priority than concatenation, which has a higher priority than union.

We use indices to identify capturing groups within a RE. Given a RE E
containing c capturing groups, we assign indices 1, 2, . . . c to each capturing group
in the order of their left parentheses as E is read from left to right. We use
the notation idx(E) to refer to the resulting indexed RE. For example, if E =
((a)∗|b)(ab|b) then idx(E) = ((a)2∗|b)1(ab|b)3.

We introduce the set of symbols T = {St, Et : 1 ≤ t ≤ c}, referred to as tags,
which will be used to encode the start and end of capturing groups.

The language L(F) for an indexed RE F = idx(E) is a subset of (Σ ∪ T)∗,
defined by L(ε) = {ε}, L(a) = {a}, L(F1F2) = L(F1) · L(F2), L(F1|F2) =
L(F1) ∪ L(F2), L(F∗) = L(F∗?) = L(F)∗, and L((F)t) = {StαEt : α ∈ L(F)},
where ()t denotes a capturing group with index t.

Definition 1. A valid assignment of submatches for RE E and input string α
is a map sub : {1, . . . , c} → Σ∗ ∪ {null} such that there exists β ∈ L(idx(E))
satisfying: (i) β|Σ = α; (ii) if St occurs in β then sub(t) = βt|Σ, where βt is the
substring of β between the last occurrence of St and the last occurrence of Et;
(iii) if St does not occur in β then sub(t) = null. ��
For example, given the RE E = ((a)∗|b)(ab|b) and an input string aaab, the
assignment sub with sub(1) = aaa, sub(2) = a, and sub(3) = b is valid for
β = S1S2aE2S2aE2S2aE2E1S3bE3.

326 S. Haber et al.

If α ∈ Σ∗ we say that α matches E if and only if α = β|Σ for some β ∈
L(idx(E)). Note that for a RE without capturing groups, this coincides with the
standard definition of the set of strings matching the expression.

Given a RE containing capturing groups and an input string, the task of a
submatch extraction algorithm is to report a valid assignment of submatches if
there is one, and to report that the string does not match if there is not.

3 Description of the Algorithm

For this entire section we fix a RE E, and show how to compile E into two
deterministic automata, denoted M3 and M4, that will be used to match a
string. This is done in the preprocessing stage. For the matching and extraction
operations, we use M3 to determine whether the input string matches E, and if
it does, we use M4 to determine what submatches to report.

To understand the need for two automata, consider the RE (.∗)a|(.∗)b. If a
procedure is to match a given string against this expression and at the same
time to decide whether to match the string to the first or the second capturing
group, then clearly the procedure must look ahead to the end of the string. A
finite automaton, whose only operating memory is carried by the state it is in,
requires other means in order to perform this “look ahead”. We achieve this by
converting our RE into the DFA M3 that we run backwards on the input string,
accepting or rejecting it as a match; while doing so, we journal the states this
DFA goes through. This journaled sequence of states is used as the input to the
second automaton, M4, which has been constructed using tagging information
from our RE (encoded by the symbols Si, Ei,+,−). This automaton outputs the
appropriate tagging information, which in turn is used to report submatches.

In the preprocessing stage we first construct two other automata, M1 and M2,
and then use these to derive M3 and M4, as described below.

3.1 The Automaton M1

The automaton M1 encodes idx(E) as a automaton. We use separate transitions
with labels St and Et to indicate the start and end of a capturing group with
index t, in addition to transitions labeled with alphabet characters to consume an
input character, and transitions labeled with + and − to indicate submatching
priorities.

The automaton M1 is described by the tuple (Q1, Σ1, Δ1, s1, f1), where Q1

is a set of states identified by the integers in the set {1, 2 . . . f}, Σ1 is the alpha-
bet Σ ∪ {+,−} ∪ T , where + and − are two special alphabet characters that
will be described below, Δ1 is a transition function, s1 = 1 is the start state
and f1 = f is the unique final state. Δ1 is built using structural induction on
idx(E) following the rules illustrated by the diagrams in Fig. 1. The initial state
is marked with > and the final state with a double circle. A dashed arrow with
label F or G is used as shorthand for the diagram corresponding to the indexed

Efficient Submatch Extraction for Practical Regular Expressions 327

�������	
��
������ε

��
���� �������	
��
����
a ����a ∈ Σ

��
����
��
���� �������	
��
������� F �� ��� G ����FG

��
����

��
����

��
����

�������	
��
����

������
+ ��

���
���

− ��

�
�

� F
��
�

�
� G

����F |G

��
����
��
����
��
���� �������	
��
����
+ �� ��� F �� − ��

+

��

−
��

��F∗

��
����
��
����
��
���� �������	
��
����
− �� ��� F �� + ��

−
��

+

��
��F∗?

��
����
��
����
��
���� �������	
��
����
St �� ��� F �� Et ����(F)t

Fig. 1. Rules for the construction of M1

1�������� 2�������� 3�������� 4�������� 5�������� 11�������� 12�������� 13��������

8�������� 9�������� 7�������� 6�������� 10�������� 14�������� 15�������� 16
��
������������

S1 �� + ��

��
��
��
��−

��

+ ��

��
��
��
��−

��

S2 ��

��
��
��
��a

��E2��

��������

+
		

−��b ��

E1

��������

S3

		
+ ��

−
��

a ��

��
��
��
��

b

��b �� E3 ��

��

Fig. 2. The DFA M1 for ((a)∗|b)(ab|b)

expression F or G. For example, the automaton M1 for ((a)∗|b)(ab|b) is shown
in Fig. 2.

If x is any directed path in M1, when it is considered as a directed graph, we
write ls(x) for its label sequence. For example in Fig. 2 ls(8 → 9 → 10 → 11 →
14) = bE1S3−.

Let π : Q1×Q1 → T ∗ be a mapping from a pair of states to a sequence of tags,
to be used in the constructions below, defined as follows. For any two states p, q ∈
Q1, consider a depth-first search of the graph ofM1, beginning at p and searching
for q, using only transitions with labels from T ∪{+,−}. The construction rules
for M1 ensure that if there is any state with two different outgoing transitions,
one will be labeled ‘+’ and the other ‘−’. The search explores all states reachable
via the transition labeled ‘+’ before following the one labeled ‘−’. If this search
succeeds, finding successful search path λ(p, q), then π(p, q) = ls(λ(p, q))|T is
the sequence of tags along this path. If it fails, then π(p, q) is undefined. Note

328 S. Haber et al.

5�������� 8�������� 12��������

14�������� 16
��
������������ 13��������

b ��

��
��
��
��
��
��

b

��

a

��
a

��
b��b ��

a

a

��
�� �� ��

��

v�������� w
��
������������ x
��
������������

y
��
������������ z
��
������������

b �� b ��

b

��

a
��

��
��

��
��

��
��

a

��

a

��

Fig. 3. The automaton M2 for the RE
((a)∗|b)(ab|b)

Fig. 4. The automaton M3 for for the
RE ((a)∗|b)(ab|b), where v = {16}, w =
{13, 14}, x = {8}, y = {5}, and z =
{5, 12}

that π(p, p) is defined to be the empty string, and that this description of the
search uniquely specifies λ(p, q), if it exists.

3.2 The Automaton M2

Next, we convert M1 into another automaton, the NFA M2, described by the
tuple (Q2, Σ,Δ2, S2, f). The set Q2 consists of the final state of M1 together
with any state in M1 that has an outgoing transition labeled with a symbol in
Σ, i.e.

Q2 = {f} ∪ {q : ∃a ∈ Σ, p ∈ Q1, (q, a, p) ∈ Δ1}
If p, q ∈ Q2 and a ∈ Σ, there is a transition (p, a, q) ∈ Δ2 if and only if there
exists a state r ∈ Q1 such that (p, a, r) ∈ Δ1 and π(r, q) is defined. S2 is a set of
initial states, corresponding to those states, p ∈ Q2, for which π(1, p) is defined.

For example, the automaton M2 for ((a)∗|b)(ab|b) is shown in Fig. 3.

3.3 The Automaton M3

Next, we convertM2 into the DFAM3, specified by the tuple (Q3, Σ,Δ3, s3, F3).
The construction of M3 from M2 is a standard powerset construction of a DFA
from a reversed NFA [9], modified in order to process the input string backwards.
Specifically, each state in Q3 corresponds to a subset of states in the powerset
of Q2. The initial state s3 is {f}. We initialize Q3 to {{f}}, and recursively add
states r to Q3 by constructing for each a ∈ Σ the set

P (r, a) = {p ∈ Q2 : (p, a, q) ∈ Δ2 for some q ∈ r},
i.e. the set of states from which there is a transition labeled a to an element of
r. If this set is not empty, it is added to Q3 and the transition (r, a, P (r, a)) is
added to Δ3. We explore each previously unexplored state in Q3 until there are
no states in Q3 left to explore. The set of final states in M3, F3, consists of any
state q in Q3 such that q ∩ S2 is not empty. The DFA M3 for ((a)∗|b)|(ab|b) is
shown in Fig. 4.

Efficient Submatch Extraction for Practical Regular Expressions 329

3.4 The Automaton M4

Next, we use M1, M2 and M3 to construct another automaton, M4, described by
the tuple (Q4, Σ4, Δ4, s4). Q4 is essentially M2 with one extra state, where the
input alphabet is Σ4 = Q3 instead of Σ, and some edges are deleted. Specifically,
we introduce a new state labeled ‘0’, which will be the start state of M4, so that
Q4 = Q2∪{0}. This is a DFA except that the transition function is a four-tuple,
i.e. Δ4 ⊆ Q2 ×Q3 ×Q2 × T ∗.

The definition of M4 uses a partial ordering on label sequences of paths in M1

that corresponds to the priorities for submatches. The intuition for M4 is that a
transition (p,Q, q, τ) of M4 exists if, among all the paths in M1 that have start
state p, end state in Q, first label in Σ and no other labels in Σ, the path with
the highest-priority label sequence ends at state q and has label sequence aτ for
some alphabet symbol a ∈ Σ. The output τ encodes the capturing groups that
are entered and left as this path is followed; during the runtime operation, this
information will be used to determine the submatch that should be reported for
each capturing group.

Let ≺ be the lexicographic partial ordering on Σ∗
1 that is induced by the

relation {(a, a) : a ∈ Σ1} ∪ {(−,+)} on Σ1. For example, if a, b, c are different
elements of Σ, then a ≺ a-+b ≺ a+c, but ab
≺ ac and ac
≺ ab. Finally, we
define Δ4, the transition function for M4, as follows. Let (p,Q, q, τ) be in Δ4 iff
there exist p, r ∈ Q2, Q ∈ Q3, q ∈ Q, a ∈ Σ, such that (p, a, r) ∈ Δ1, π(r, q) is
defined, and

τ = π(r, q) = (max≺ {ls(λ(r, q′)) : q′ ∈ Q}) |T .

Similarly, let (0, Q, q, τ) be in Δ4 iff there exist Q ∈ Q3, q ∈ Q such that π(1, q)
is defined, and

τ = π(1, q) = (max≺ {ls(λ(1, q′)) : q′ ∈ P}) |T .

For space considerations, we omit from this paper the proof that the maximal
elements used in these definitions exist, and are unique. Continuing with our
running example, the automaton M4 for ((a)∗|b)(ab|b) is shown in Fig. 5.

3.5 Runtime Operation

We extract submatches for a string a1 . . . a� ∈ Σ∗ in runtime in three steps:

1. We process the string a�a�−1 . . . a1 using M3. As it is processed, we journal
the states q�, q�−1, . . . visited during the processing, where q� is {f}, the
initial state of M3. If the processing terminates before the whole input string
has been processed (i.e. because we hit a “dead state” of M3), or terminates
with q0 /∈ F3, we report that the string does not match and stop. This step
runs in O(�) time.

2. If we did not stop in the previous step, we run M4 on input q0, q1, . . . q�,
using an additional data structure along the way in order to discover the

330 S. Haber et al.

5��������

0�������� 8�������� 12��������

14�������� 16
��
������������ 13��������

�����
�����

�����
�����

�{5}, {5, 12}/S1S2

��

{8}/S1 ��

{13, 14}/S1E1S3

��
					

					
					

					
	

{13, 14}/E2E1S3
��

{5, 12}/E1S3 ��

{13, 14}/E1S3

��

{13, 14}/
��

{16}/E3

��
{16}/E3

��
{5}, {5, 12}/E2S2

��

��

Fig. 5. The automaton M4 for the RE ((a)∗|b)(ab|b). Transitions are labeled with a
slash separating inputs from outputs.

submatch values for each capturing group. The data structure consists of an
array of length 2c, indexed by elements of T , all initialized to null. While
processing the ith transition, namely (qi, P, qi+1, τ) ∈ Δ4, for each tag in
τ ∈ T ∗ we write i in the array entry corresponding to the tag, overwriting
the current entry. This step runs in O(�c) time.

3. We use the resulting array to read off the submatches from the input string,
as follows. If the array entries for the tags Sj and Ej are sj and ej, respec-
tively, then the submatch for capturing group j is asj+1 . . . aej . If the array
entries Sj and Ej are null, then there is no submatch for the jth capturing
group. This step runs in O(�c) time.

The first two steps together are calledmatching; the third step is called extraction.
For example, consider processing the input string aaab for the RE ((a)∗|b)|(ab|b).
In step 1, we process the string baaa with M3. The states visited are {16},
{13, 14}, {5, 12}, {5}, {5} (see Fig. 4). In step 2, we run automatonM4 with input
{5}, {5}, {5, 12}, {13, 14}, {16}, writing entries in the array with each transition
(see Fig. 5). The resulting array reads

[S1, E1, S2, E2, S3, E3] = [0, 3, 2, 3, 3, 4].

In step 3, we read from the array that the three capturing groups have respective
submatches aaa, a, and b.

To see that the O(�c) complexity bound in step 2 gives the worst-case runtime
for our algorithm, suppose that E = [a(F1)(F2)...(Fc)]

∗ (using square brackets to
denote a non-capturing group) with a, b ∈ Σ, F1 = b|ε, F2 = bb|ε, F3 = bbb|ε . . .,
and ai = a for all 1 ≤ i ≤ �. Then for 1 ≤ i ≤ �, the string output by M4 when
processing qi in the second step of the operation is S1E1S2E2 . . . ScEc, and so
in this case the operation updates 2�c array elements.

Note that in our analysis, we assume that we can read or write the index of
one of the states of our automata in constant time and space. In practice, we
never run our algorithm for a RE whose automaton is exponentially large.

Efficient Submatch Extraction for Practical Regular Expressions 331

3.6 Correctness

Here we prove the theorem, which shows the correctness of our algorithm.

Theorem 2. Suppose that the input string α = a1 . . . an matches the RE E.
Then our algorithm reports a valid assignment of submatches for E and α.
Proof. We will prove the theorem by constructing a string γ ∈ L(E), and then
showing that the assignment of submatches for E and α satisfies the three prop-
erties in Definition 1 for a valid assignment, with β equal to γ.

The first step is to show that the operation of our algorithm does not ter-
minate before all of q0, q1, . . . q� have been processed by M4. Since α matches
E, it is accepted by M2, and by Rabin and Scott’s result relating languages of
automata [9] this implies that the reverse of α is accepted by M3; thus, the first
step of the runtime operation does not terminate early, and ends at state q0 in F3.
By definition of F3, there is some j ∈ q0 such that π(1, j) is defined. Therefore
(0, q0, j0, τ0) ∈ Δ4 for some j0 ∈ q0 and τ0 = π(1, j0) ∈ T ∗. So the processing of
q0, q1 . . . q� by M4 does not terminate before q0 has been processed.

Suppose inductively that 1 ≤ i ≤ �, the processing of q0 . . . q� by M4 does not
terminate before qi−1 has been processed, and that ji−1 ∈ qi−1, where ji−1 is the
state of M4 reached just after qi−1 has been processed. Now, qi is the i

th state of
Q3 visited when a�a�−1 . . . a1 is processed by M3, and so it is the set of elements
of Q2 from which there is a path in M2 from q to f with label sequence ai+1 . . . a�.
Therefore, (ji−1, ai, j) ∈ Δ2 for some j ∈ qi. By the definition of M2, there is
some ki ∈ Q1 such that ei = (ji−1, ai, ki) ∈ Δ1 and π(ki, j) is defined. By the
construction of M4, it follows that there is some ji ∈ qi and τi = π(ki, ji) ∈ T ∗

such that (ji−1, qi, ji, τi) ∈ Δ4. This shows that for 1 ≤ i ≤ �, qi is processed in
step 2 of the operation, as required.

Note that j� ∈ q� = {f}, so j� = f . Let y be the path in M1 from 1 to f
obtained by concatenating λ(1, j0), e1, λ(k1, j1), . . . e�, λ(k�, j�). Now we can
define γ: it is ls(y)|Σ∪T . Note that it is equal to the concatenation of τ0, a1, τ1,
. . . a�, τ�.

It is straightforward to prove by induction on the size of E that L(E) =
{β|Σ∪T : M1 accepts β}. The automaton M1 accepts ls(y), so γ ∈ L(E).

We will now show that the assignment of submatches reported by the opera-
tion satisfies the three criteria for a valid assignment, with β equal to the string
γ. Property (i) holds because γ|Σ = a1 . . . a� = α.

For property (ii), observe that for 0 ≤ i ≤ �, when qi is processed in step 2
of the operation, i is written in the array entry for each tag in τi. Thus if the
array entries for Sj and Ej at the end of step 2 are sj and ej respectively, then
the last occurrence of Sj in γ lies before a1 if sj = 0, between asj and asj+1 if
0 < sj < � or after a� if sj = �, and similarly for ej and the last occurrence of
Ej in γ. Property (ii) follows.

For property (iii), observe that it follows from the definition of L(E) that if
St occurs in a string in L(E), then Et must also occur in the string. Suppose
that St does not occur in γ. Then neither does Et, and so St, Et do not occur
in any of τ0, . . . τ�. So at the end of step 2 the array entries for St, Et are null,
and step 3 reports that there is no match to capturing group t, as required.

332 S. Haber et al.

Table 1. Results for DHCP and Snort log experiments (times in microseconds)

Our Algorithm Java RE2
RE compile match extract compile match extract compile match+extract

DHCP 16,993 47,685 19,809 44 119,852 21,423 32 1,153,118
Snort 24,761 64,484 804 14 138,138 1,666 22 1,414,001

4 Evaluation

Our first set of experiments deals with parsing logs for Microsoft DHCP logs
and for Snort, which is an open source intrusion detection system. DHCP logs
are a simple comma-separated format with exactly eight fields. To parse such a
log record, the following RE is used,

([^,]*),([^,]*),([^,]*),([^,]*),([^,]*),([^,]*),([^,]*),([^,]*)

where the syntax [^,] means any character except a comma.
For Snort logs, we must extract the source and destination IP addresses and

the source and destination ports (if they exist). The RE we used is

.*? (\d+\.\d+\.\d+\.\d+)(:\d+)? -> (\d+\.\d+\.\d+\.\d+)(:\d+)? .*

where the metacharacter \d represents any numeral, the operator + is a variation
on closure that requires at least one instance of its operand, and the operator ?
means exactly zero or one instances of its operand.

All experiments were performed on a workstation with twelve 2.67GHz cores
and 6GB of RAM. Our algorithm was implemented in Java, whereas RE2 is
implemented in C++.

We ran an experiment where we matched 100,000 lines of DHCP log files and
25,741 lines of Snort log files against the regular expressions and experimentally
evaluated it in comparison to Java and RE2, as shown in Table 1. Since RE2
matches and extracts in a single operation, these are grouped in the table. Clearly,
our algorithm is much slower in the compilation phase than either Java or RE2.
But as we have discussed in the introduction, we are willing to incur a significant
penalty in the compilation phase, since for the problems we are interested in, we
perform compilation once, but matching and extraction many times for each
RE. When we amortize the compilation time over the matching and extraction
time with multiple strings, our algorithm can actually outperform Java and RE2.
This result is surprising given that RE2 has previously been reported to be faster
than other C/C++ based RE engines [1].

Next, we ran several experiments evaluating our algorithm for performance,
storage usage, and correctness on a set of REs that are included as part of a com-
mercial Security Information and Event Management (SIEM) system that uses
16,805 unique REs. Of these REs, 7732 (46.0%) have no capturing groups, and
thus can be matched with an ordinary DFA; 7596 (45.2%) can be implemented
with our two pass algorithm; 1396 of these REs (8.3%) can be implemented more

Efficient Submatch Extraction for Practical Regular Expressions 333

Fig. 6. Performance as a function of RE length

efficiently using a variation on our algorithm that only requires one pass (the
details of that algorithm are beyond the scope of this paper); 51 (0.3%) caused
the size of M3 in our algorithm to grow beyond 4096 states, at which point we
declared failure; 20 (0.1%) have syntactic features which we have not yet imple-
mented in our algorithm, but which we believe will not impact performance.

For the first four categories of REs, we synthetically generated 1,000 matching
strings for each of the REs. We then measured the time to match those strings
using both our algorithm and Java. The results (broken down by RE length)
are shown in Fig. 6. The blue bars are a histogram of the number of REs that
have a length in each bin range. The count of the number of REs is shown on
the left-hand y-axis. We then measure the performance as the log of the time
taken by Java minus the log of the time taken by our algorithm in order to show
speedups in both directions symmetrically. We then plot those results as a box
plot showing the first, second, third and fourth quartiles for each bin. The min
and max performance are the end of the line segments, while the range between
the second and third quartile is shown in the box. The range of performance
values are shown on the right-hand y-axis. As can be seen in the figure, our
algorithm is faster than Java most of the time, regardless of the length of the
RE, often significantly faster. On average, we are 2.3 times faster than Java.

This was a computationally intensive test which took over 8 hours on our
workstation at 580,694 matches per second: we performed 1,000 tests on 1,000
strings for 16,724 REs. We omitted the performance comparisons against RE2
because RE2 would simply take too long.

Theoretically, the number of states in a DFA built using a powerset construc-
tion could be exponential in the size of the RE. However, as described above, less
than 0.3% of the REs exhibited such behavior. In fact, for 99% of the DFAs built
with a powerset construction, the ratio of the number of states to the length of

334 S. Haber et al.

the RE string was less than 5.25. For approximately 58% of the REs, the DFA
actually had fewer states than the length of the RE string. The average RE
needed 28 kBs for the transition tables and other associated data structures.

We were able to measure the memory usage of our own algorithm, but ac-
curately measuring the data structures associated with regular expressions is
infeasible in third party software. Regardless, backtracking algorithms generally
just need enough space to store the regular expression itself, which is essentially
negligible.

Although we have proved that our algorithm is guaranteed to generate a valid
assignment of submatches, we are particularly interested in showing that our
algorithm generates the same submatches as Java since there may be multiple
valid assignments of submatches for a given RE. We synthetically generated 15
matching and non-matching strings for each RE in the first four categories. The
submatches extracted by our approach and Java were identical.

5 Summary

In this paper, we introduced a new algorithm for converting REs to automata
that handles submatch extraction and reluctant closures. Our experimental re-
sults show that our algorithm is approximately twice as fast as Java’s backtrack-
ing based regular expression library and approximately twenty times faster than
RE2 on real-world REs used for several problems involving processing of security
event logs, including a comprehensive test of the algorithm against a database
of 16,724 REs used by a commercial SIEM system.

References

1. Benchmark of Regex Libraries (July 2010),
http://lh3lh3.users.sourceforge.net/reb.shtml

2. RE2 (January 2012), http://code.google.com/p/re2/
3. PCRE (2011), http://www.pcre.org/
4. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-

guages, and computation. Addison-Wesley (2003)
5. Laurikari, V.: NFAs with tagged transitions, their conversion to deterministic au-

tomata and application to regular expressions. In: Proc. of the 7th Int. Symp. on
String Processing and Information Retrieval, pp. 181–187 (2000)

6. Laurikari, V.: Efficient submatch addressing for regular expressions. Master’s thesis,
Helsinki University of Technology (2001)

7. Nourie, D., McCloskey, M.: Regular Expressions and the Java Program-
ming Language (2010), http://java.sun.com/developer/technicalArticles/

releases/1.4regex

8. Pike, R.: The Text Editor sam. Softw. Pract. Exper. 17, 813–845 (1987)
9. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Re-

search and Development 3(2) (April 1959), doi:10.1147/rd.32.0114
10. Thompson, K.: Programming techniques: Regular expression search algorithm.

Comm. ACM 11, 419–422 (1968)

http://lh3lh3.users.sourceforge.net/reb.shtml
http://code.google.com/p/re2/
http://www.pcre.org/
http://java.sun.com/developer/technicalArticles/releases/1.4regex
http://java.sun.com/developer/technicalArticles/releases/1.4regex

	Efficient Submatch Extraction
for Practical Regular Expressions

	Introduction
	Valid Submatch
	Description of the Algorithm
	The Automaton M1
	The Automaton M2
	The Automaton M3
	The Automaton M4
	Runtime Operation
	Correctness

	Evaluation
	Summary
	References

