
A Novel Algorithm for Pattern Matching with Back

References

Liu Yang
Baidu, Inc.

Shenzhen, China 518000

Vinod Ganapathy
Rutgers University

Piscataway, NJ 08854, USA

Pratyusa Manadhata
Hewlett Packard Laboratories

Princeton, NJ 085421

Ye Wu
Baidu, Inc.

Shenzhen, China 518000
Email: yangliull@baidu.com Email: vinodg@cs.rutgers.edu Email: manadhata@hpe.com Email: wuye01@baidu.com

Abstract-Modern network security applications, such as
network-based intrusion detection systems (NIDS) and firewalls,
routinely employ deep packet inspection to identify malicious
traffic. In deep packet inspection, the contents of network traffic
are matched against patterns of malicious traffic to identify
attack-carrying packets. The pattern matching algorithms em
ployed for deep packet inspection must be fast, as the algorithms
are often implemented on middle-boxes residing on high-speed
gigabits per second links. The majority of patterns employed in
network security applications are regular languages. However,
regular language-based patterns have limited expressive power
and are not capable of describing some complex features in
network payload. Back reference is an important feature pro
vided by many pattern matching tools, e.g., PCRE, the regular
expression libraries of Java, Perl, and Python. Back references
are used to identify repeated patterns in input strings. Patterns
containing back-references are non-regular languages. Very little
work has been done to improve the time-efficiency of back
reference-based pattern matching. The de facto algorithm to
implement back reference is recursive backtracking, but it is
vulnerable to algorithmic complexity attacks. In this paper, we
present a novel approach to implement back references. The
basic idea of our approach is to transform a back reference
problem to a conditional submatch problem, and represent it
with a Non-deterministic Finite Automata (NFA)-like machine
subject to some constraints. Our experimental results show that
our approach resists known algorithmic complexity attacks, and
is faster than PCRE by up to three orders of magnitude for
certain types of patterns.

Index Terms-Pattern matching; Back reference; Finite au
tomaton; Network-based Intrusion Detection System.

I. INTRODUCTION

Network security applications, e.g. , network-based intrusion
detection systems (NIDS) and firewalls, perform deep packet
inspection to identify malicious traffic. In deep packet in
spection, the contents of network traffic are matched against
patterns of malicious traffic to identify attack-carrying packets.
In the past, patterns were represented by keywords that could
be efficiently matched using string matching algorithms, e.g. ,
KMP [11], Boyer-Moore [4], Wu-Manber [24], and Aho
Corasick [2]. The increasing complexity of network attacks
has lead the community to employ more expressive represen
tations, which require the full power of regular expressions.

Strictly speaking, regular expressions denote patterns that
can be described by regular languages. However, this term

978-1-4673-8590-9/15/$31.00 ©2015 IEEE

has been extended to represent patterns that have non-regular
language features. Among these features, capturing groups and
back references are two important ones. A capturing group is
used to specify a sub-expression of a regular expression, and a
back reference denotes a repeated sub-expression in a regular
expression. Many pattern matching tools, e.g. , PCRE [16], the
regular expression libraries of Java, Perl, and Python, support
capturing groups and back references. Patterns containing back
references are non-regular languages [7].

Patterns with back references are more expressive than
regular languages. For example, suppose we want to match
a pair of XML tags and the text in between. It will
be hard to represent this pattern if we are only al
lowed to use regular languages because tags in an XM
L file may be unknown beforehand. In this case, a back
reference can easily describe the pattern. For example,
"< ([A -Z] [A -Z 0 -9] *) [�>] * > . *? < / \ 1 >" can be used
to match a pair of XML tags and the text in between, where
the first capturing group (subexpression within the pair of
parentheses) is used to capture an XML tag, and the "\ 1 "
denotes that the captured tag will be reused at the end (before
the '>' symbol) of the pattern. A pattern can have multiple
back references, where each of them refers to a different
capturing group. Multiple back references can be sequentially
named by a '\' followed by different numbers. For example,
three back references can be named as "\ 1 ", " \ 2 ", and
"\3". One back reference can also appears multiple times in
a pattern, e.g. , " ([a-c]) x\lx\l". Back references are also
employed by modern NIDS to represent attack signatures. For
example, the HTTP rule set of Snort 2012 has 167 patterns
containing back references [21].

Since patterns containing back references are non-regular
languages, they cannot be represented by finite automata,
i.e. , non-deterministic finite automata (NFAs) or deterministic
finite automata (DFAs), as finite automata are equivalent
representations of regular languages. Thus, prior approaches
on NFAs or DFAs could not be applied to back references.
In fact, very little work has been done for patterns containing
back references. As pointed out by Cox [6], "No one knows
how to implement pattern with back references efficiently,
though no one can prove that it's impossible either". Specifi
cally, the back reference problem is NP-complete [1]. The de
facto algorithm for back references is recursive backtracking.

However, recursive backtracking is vulnerable to algorithmic
complexity attacks [18]. For example, the throughput of PCRE
quickly decreases to nearly zero mega-byte/second for patterns
in the form of " (a? { n)) a { n} \ 1 " (n = 5,10,15,20,25,30)
with input strings in the form of an (i.e. , a is repeated n
times). In fact, we observed that PCRE fails to return correct
results for n ?: 25 on a Linux machine with a typical hardware
configuration. Can we find an approach that can address back
references but resist known algorithmic complexity attacks? In
this paper, we explore the answer to this question.

A. Our Contribution

We present a novel approach to implement pattern matching
with back references. The basic idea of our approach is to
transform a back reference problem to a conditional sub match

problem, and represent a conditional submatch problem using
an NFA-like machine subject to some constraints. We evaluate
the feasibility of our approach with a software-based imple
mentation, using both synthetic patterns and patterns from real
world NIDS. Our experimental results show that our approach
resists known algorithmic complexity attacks and is faster
than PCRE by three orders of magnitude for certain types
of patterns.

The remainder of this paper is organized as follows. Sec
tion II provides some background of the problem. Section III
presents the design of our algorithm for patterns with back
references. Sections IV and V present the implementation and
the experimental evaluation of our approach, and Section VI
discusses the related work. Section VII concludes our work.

II. BACKGROUND

A. Finite Automata and Regular Expressions

Finite automata are natural representations for regular ex
pressions. It is known that regular expressions, deterministic
finite automata (DFAs), and non-deterministic finite automata
(NFAs) are equivalent in terms of expressive power. Therefore,
regular expression matching can be performed by operating the
corresponding NFAs or DFAs. Given a regular expression, we
can use Thompson's algorithm [23] to construct an NFA that
recognizes the same language as the given regular expression.
An NFA can be converted to a DFA that recognizes the same
language using the subset construction algorithm [9]. For a
regular expression of length m, with an input string of length
n, the time complexities of the DFA-based algorithm and
Thompson's NFA-based algorithm are O(n) and O(m x n)
respectively. However, their space complexities are O(2m)
and O(m). In other words, DFA-based algorithms are time
efficient but space inefficient; NFA-based algorithms are space
efficient, but often much slower than DFA-based algorithm
s [7].

B. Recursive Backtracking-based Matching

Another way to simulate an NFA is using recursive back
tracking. The algorithm operates in a depth-first-search style.
For a current state with the ith symbol in an input string,
the algorithm processes all states in the next set of states in

a depth-first-search way. A recursive backtracking algorithm
may have to scan an input string multiple times before it finds
a match. Tools like PCRE and the regular expression libraries
in many high level languages such as Java, Perl, and Python
implement pattern matching using recursive backtracking. As
it was pointed out by Cox, recursive backtracking based
matching can be extremely slow in some cases [7].

C. Algorithmic Complexity Attack

As we described in Section I, recursive backtracking is
the de facto implementation of back references. However, a
recursive backtracking matching algorithm can be extremely
slow in certain cases, as is shown by an example below.

Figure 1 shows the process of using recursive
backtracking algorithm to match the pattern
"host. *com. *uuid=. *wv=. *cargo" with the
following string that has 45 characters:

"hostcomhostcomhostcomuuid=uuid=uuid=wv=wv=wv="

We denote the five parts separated by " . *" in the pattern
by PI, P2, P3, P4, and P5 respectively, i.e. , Pl="host",
P2="com", etc. A number on an edge between two nodes in
the figure denotes an offset where a subexpression Pi (i =

1 . . . 5) is matched in the input string. For example, the
leftmost edge between PI and P2 is labeled by 3, which
means that "ho s t" is matched by the input string at offset
3. The above pattern is matched by an input string if and
only if PI, P2, P3, P4, and P5 are sequentially matched
by the input string. It can be observed that a backtracking
approach needs to try 45 paths for the input string before
it can claim that the example pattern is not matched by the
example input string. In general, for a pattern that has k parts
separated by wildcard characters " . *", the running time of a
backtracking algorithm can be close to O(nk) [18], where n
is the length of the input string. Such a behavior that triggers
a backtracking algorithm to exhaustively try all execution
paths for input strings is called the Algorithmic Complexity

Attack. Researchers have demonstrated that the throughput of a
NIDS employing recursive backtracking for pattern matching
can be slowed down by several orders of magnitude under
Algorithmic Complexity Attacks [18].

III. DESIGN OF OUR ALGORITHM

The basic idea of our approach to address back reference
is to transform a back reference problem to a conditional
submatch problem, and represent the conditional submatch
problem using an NFA-like machine subject to some con
straints. Our approach includes two phases: compilation and
execution. During the compilation phase, patterns with back
references are compiled to tagged-NFAs subjected to some
constraints. During the execution phase, pattern matching is
performed by operating the tagged-NFAs generated at the
compilation phase with input strings.

A. Pattern Compilation

We introduce a relax plus constrain approach to tackle the
back reference problem. The compilation process is shown in

Fig. 1: An example path tree traversed by the recursive backtracking agorithm.

Algorithm 1. Relax refers to re-writing a regular expression
with back references to a regular expression that only contains
capturing groups. During re-writing, a back reference part is
replaced by the capturing group that is referred by the back
reference. By doing this, a back reference and its referred
capturing group become a pair of capturing groups in the
re-written regular expression. To make the re-written pattern
be equivalent to the original pattern, we add a constraint to
the accept condition such that the submatches returned by
the capturing group pair are equal. The re-writing operation
is shown in line 1 of Algorithm 1, where p is the re
written expression and C denotes the constraint added to the
accept condition. For example, pattern "(a *) aa \ 1 " can be
re-written as "(a *) aa (a *) " with the constraint such that
"$ 1=$2 ", where "$ 1 " and "$2 " denote the first and second
submatches captured by the two capturing groups.

Once a pattern with one or more back references is
transformed to a pattern of conditional submatch extraction,
we can construct an NFA-like machine (a tagged-NFA) that
is equivalent to the converted pattern using a Thompson's
like algorithm. The algorithm starts from three basic cases:
tagged-NFAs of E expression, empty expression, and a symbol
wrapped by a capturing group. More complex tagged-NFAs
can be constructed using the union, concatenation, and closure
constructs. The construction process bears some similarity to
constructing a tagged-NFA described in [27]. As we will see
soon, the difference lies in how to operate a tagged NFA.
Recall that we add a equal substrings constraint to a re
written pattern in order to make it equivalent to its original
pattern. Thus, we need a mechanism to maintain substrings
matched by the capturing groups in a re-written pattern. To
do so, a tagged NFA needs to have a data structure allowing
for bookkeeping of captured substrings. The data structure
we use is to associate each state with a pair of substrings
(multiple pairs of substrings are needed if there are multiple
back references). For transitions within a capturing group, we
add the corresponding input symbols into captured substrings.
For transitions that are not within any capturing group, we just
carry over the captured substrings from state to state. When
a tagged-NFA reaches a final state, we check whether there

Algorithm: Pattern Compilation
Input : A pattern r
Output : A tagged-NFA with constraints

1 (p, C)=re-write(r);
2 (Q, L;, T, 6, qo, Fin) = compile(p) ;
3 return ((Q, L;, T, 6, qo, Fin), C);

a pattern

exists a pair of equal captured strings. If so, an input string is
matched by the tagged-NFA. To be more formal, we denote a
tagged NFA as a 6-tuple (Q, L;, T, 6, qo, Fin), where Q is the
state set, L; is an alphabet set, T is a tag set, qo is the start
state, Fin is a set of final states, and 6 is a transition function
6 : Q x L;* x L;* x . . . --+ Q x L;* x L;* x . . . that maps a current
state with the captured substrings to a next state with updated
captured strings. The Thompson's-like process to construct a
tagged-NFA is described in line 2 of Algorithm 1.

We now demonstrate the compilation process using the ex
ample pattern " (a *) aa (a *) ". After adding tags, the pattern
is denoted as "(M)t1aa(M)t2'" where tl to t2 are used to
label the two capturing groups. Figure 2 shows a tagged
NFA constructed from pattern "(a*)tl aa(a*)t2" such that
"$1=$2 ". It can be observed that the transition from state 1 to
itself with input symbol 'a' is within the first capturing group,
and the transition from state 3 to itself with input symbol 'a'
is within the second capturing group. All other transitions are
not in any capturing group.

Similar to traditional NFAs, we can use a transition table to
represent the transitions of a tagged-NFA. Instead of having
three columns, the transition table of a tagged-NFA has five
columns, where the first three columns are same as those in
a traditional transition table, the fourth column denotes tags
associated with each transition, and the fifth column specifies
the actions used for maintaining the substrings matched by
capturing groups. In our design, we have three types of actions:
new, update, and carryover, where new and update actions
are associated with transitions within capturing groups, and
a carryover action is associated with transitions not in any

Fig. 2: The tagged-NFA constructed from " (a *) aa (a *) ".
The start state is labeled by I, and the accept state is labeled
by 3.

Algorithm: Execution
Input : An input string str to be matched,

and a tagged-NFA with constraints
((Q, L;, T, 6, qo, Fin), C) compiled
from a pattern.

Output : true or false
I current_states = {(qo, "", "", ...)};
2 for i=1 to strlen(str) do
3 nexCstates = {};
4 foreach (s, substri , substr2, . . .) E

current_states do
5

6

7

8

tern.

l next states = next states U

6((s, substrI' substr2,"')' str[i]);

if (i==strlen(str)) and
(:3(x, substrl, substr2, ...) E nexCstates)
s.t. (x E F in) and
C(substrl, substr2, ...) = true then
I return true;

current_states = nexCstates;

capturing group. A new action denotes creating a new captured
substring using a current input symbol, and an update action
denotes updating a substring by appending an input symbol
to the end of the substring. A carryover action denotes that
captured substrings are copied over from a current state to a
next state. Table I shows the transition table of the tagged-NFA
in Figure 2.

B. Execution

We now describe how to match a pattern that has back
references with an input string. The matching process is
called execution of a compiled pattern and it mainly involves
two operations: frontier derivation and acceptance checking.

Frontier derivation refers to how to update the current states
of a tagged-NFA with an input symbol. Acceptance checking
refers to checking whether the tagged-NFA is in an accept
state. The matching algorithm is shown in Algorithm 2, where
lines 4-5 describe the frontier derivation, and line 6 describes
the acceptance checking operation.

1) Frontier Derivation: To allow for the maintenance of
captured substrings, we denote an element in a frontier set by a
tuple (x, substrI' substr2 ' . . .), where x is a state number, and
substri and substr2 are substrings matched by the capturing
groups. In general, if there are k back references, we need a
(2k + I)-tuple to represent a frontier element. During a match
test of an input string, the frontier set is initially a singleton set
{(qo, "", '''', ...)} shown in line 1 of Algorithm 2 (where '''' is
an empty string denoting that no substring has been captured
yet) but may include multiple elements during the operation of
a tagged-NFA. For each symbol in the input string, we must
process all elements in a frontier set and find a new set of
elements by applying the transition functions represented by
the transition table (lines 4-5 in Algorithm 2). Applying a tran
sition function to a frontier element (s, substrI' substr2, . . .)
and an input symbol includes two steps. The first step is a
table lookup, i.e. , given a state s and symbol I (i), retrieve all
states that are reachable from s with symbol I (i). The second
step is to apply one or more actions to the captured substrings
associated with the state s. In particular, if a transition is a
start of a capturing group, then a new action is applied; if a
transition is within a capturing group then an update action is
applied; and if a transition is not within any capturing group,
then a carryover action is applied by just copying around the
captured substrings (if there is any) from a current state to a
next state. For a pattern with one back reference, the above
frontier derivation process can be expressed by the following
Boolean formula:

g(y, s) = Fo(:3 x·:3 i·:3 t· (t = ¢ 1\ �.F(x, s, i, y, t)))
V FI (:3 x· :3 i· :3 t· (t = tl 1\ �.F(X, s, i, y, t)))
V F2(:3 x·:3 i·:3 t· (t = t2 1\ �.F(x, s, i, y, t)))

where

�.F (x, s, i, y, t) = F(x, s) 1\ Lu (i) 1\ �(x, i, y, t) (1)

F(x, s) denotes the current frontier set (s denotes captured
substrings), Lu (i) denotes an input symbol, and �(x,i,y,t)
denotes the transition relations of the tagged-NFA. The
conjunctions in Equation (1) basically selects rows in the
transition table � (x, i, y, t) that corresponding to outgoing
transitions from the states in the current frontier set F(x, s)
labeled with symbol (J. The t = ¢ 1\ �.F(x, S, i, y, t) in
9 (x) selects transitions that are not in any capturing group,
t = it 1\ �.F(x, S, i, y, t) selects transitions that are labeled
by it (first capturing group), and t = t2 1\ �.F (x, S, i, y, t)
selects transitions labeled by t2 (second capturing group).
Function Fo denotes a carryover action; function FI denotes
applying a new or update action to substrings captured by
the first capturing group; and function F2 denotes applying
a new or update action to substrings captured by the second
capturing group. Renaming the y to x in 9 (y, s) gives us the
new frontier set 9 (x, s) . The frontier derivation formulae for
patterns with multiple back references are similar, except that
more tags ti(i = 1,2, . . .) are involved.

Current state(x) Input symbo\(i) Next state(y) Tag(t) Action
1 a 1 tl newt tl} or update (td
1 a 2 if; carry_over(tl}
2 a 3 if; carry_over(tl}
3 a 3 t2 new(t2} or update(t2}

TABLE I: Transition table of the tagged-NFA in Figure 2.

Example Consider the example tagged-NFA in Figure 2 with
input string "aaaa". Initially, the frontier set is a singleton set
{(l, "", "")}. For the first input symbol 'a', we can get that
the next state can be state 1 or 2 according to the transition
table in Table I. The fourth column of the transition table
indicates that the transition from state 1 to 1 is associated
with a new(tl) function, which means we need to create a
new substring for the first capturing group using the current
input symbol 'a'. The transition from state 1 to 2 is associated
with a carTy_over(tI) action. Since no substring has been
captured in (1, "", ""), nothing needs to be copied from state
1 to state 2. As a result, the new frontier set has two elements,
.

{(1 " " "") (2 "" "")} I.e. , , a, , , , .
Renaming {(l, "a", ""), (2, "", "")} as the current frontier

set, with the second input symbol 'a', we can obtain the next
frontier set as {(I, "aa", ""), (2, "a", ""), (3, "", "")}. Using
the same method to process the third and fourth input symbols.
After processing the fourth input symbol 'a', the frontier set
is {(I, "aaaa", ""), (2, "aaa", ""), (3, "aa", ""), (3,
"a", "a"), (3, "", "aa")}.

2) Acceptance Checking: The accept condition of a tagged
NFA is: at the end of an input string, there exist a tuple
(x, substrl, substr2, . . .) in the frontier set such that x E Fin
is a final state, and substrl equals substr2 (for patterns with
one instance of back reference). If there are k different back
references, we need to have k pairs of captured substrings,
where the two substrings in each pair are equal (shown as
C(substr1, substr2, ...) = true in line 6 of Algorithm 2).
For the example tagged-NFA with input string "aaaa", it can
be observed that there is one element, i.e. , (3, "a", "a"),
in the frontier set satisfying the acceptance condition after
processing the fourth input symbol 'a'. Therefore, the input
string "aaaa" is accepted by the tagged-NFA, which means
the input string matches pattern (a *) a a \ 1.

Remarks: We note that our approach for back reference can
be employed to do submatch extraction as well. In that case,
nothing needs to be added as constraint to a tagged-NFA. The
main benefit is that this approach is capable of performing
pattern matching and submatch extraction by just scanning
the input string in a single pass.

IV. IMPLEMENTATION

We evaluated our approach using a software-based imple
mentation, dubbed as NFA-backref. The implementation is in
C++ and has two components: a compilation component and
an execution component, as shown in Figure 3. The com
pilation component reads patterns with back references and
compiles them into tagged-NFAs with constraints as described

with constraints

Fig. 3: The overview of our software-based back reference
implementation.

in Section III-A. The execution component loads compiled
patterns (tagged-NFAs) and matches them with a stream of
input strings. In our implementation, captured substrings are
represented by their starting and ending offsets in the input
strings. In this way, substrings do not have to be copied around
from states to states. Each substring is represented using only
two integers, which saves space and reduces overhead of string
copy operation.

V. EVALUATION

We evaluated the performance of our approach using both
synthetic patterns and patterns from real-world NIDS. Our
experimental results show that our approach is immune to
Algorithmic Complexity Attacks.

A. Experimental Setup

All our experiments were performed on a Intel Core2 Duo
E7500 Linux-2.6.27 machine, running at 2.93GHz with 2GB
of RAM (however, our programs are single-threaded, and only
used one of the available cores). We instrumented the matching
tool to report its execution time using processor performance
counters. We report the performance of execution as the num
ber of CPU cycles to process each symbol (cycles/byte), i.e. ,
fewer processing cycles/byte implies greater time-efficiency.

B. Data Sets

We evaluated the performance of different implementations
using the following two data sets:

a) Patho-Ol: Patterns in this data set are in the form
of (a ? { n }) a { n } \ 1, where the ? character is a 0 or 1
quantifier. This pattern will match a string starting with zero
or one 'a' repeated by n times, followed by n characters of
'a', followed by the substring captured by the first capturing
group. We evaluated the pattern for n = 5,10,15,20,25, and
30. For each pattern, we use input string in the form of an, i.e. ,
'a' repeated by n times, which will be matched by a pattern
with the same value of n.

b) Snort-46: The second data set includes 46 patterns
containing back references from the Snort HTTP signature
set. We use two input traces to evaluate this pattern set. The
first trace, which we call benign trace, was generated using a
string generator created by ourselves. Given a set of patterns
and a user expected match percentage p, the string generator
generates a trace file where p percent of strings are matched
by at least one pattern in the pattern set. The size of the benign
trace we generated in our evaluation is 5MB. The second trace
was manually crafted after carefully reviewing the 46 patterns.
We found that at least one of these patterns will suffer from the
Algorithmic Complexity Attacks if a pattern matching engine
is implemented using the recursive backtracking approach.
We thus manually created a 100KE pathological trace using
the approach described in [18] to evaluate how different
implementations perform under an Algorithmic Complexity
Attack.

C. Peiformance

We measure the time efficiency of different implementations
using the number of CPU cycles required for processing each
byte of input trace (cycle/byte). We evaluate the performance
of two implementations: Our approach (NFA-backref), and
PCRE using the data sets described in Section V-B. We did
not measure the space efficiency of different implementations
since both NFA-based approach and recursive backtracking are
space efficient, as presented in [2S] and [27].

Figure 4 shows the execution time of different implemen
tations for the Patho-Ol data set. The x-axis denotes the value
of n in pattern (a? { n }) a { n } \ 1, and the y-axis denotes the
execution time in unit of cycle/byte. It can be observed that
PCRE is a slower implementation as n increases from 5 to
30. NFA-backref is faster than PCRE by at least three orders
of magnitude (i.e. , 1000+ times) after n 2: 25.

As shown in Figure 4, PCRE performs extremely slow
for this pattern set. This is mainly because that PCRE per
forms exhaustive recursive backtracking when matching an
input string an (i.e. , 'a' repeated n times) against pattern
(a? { n }) a { n } \ 1. During a recursive backtracking, the first
matching path that is tried by PCRE is to match the n

characters of 'a' with the (a? { n }) part of the pattern. This
path will fail because there is no characters to match the
remaining part a { n } \ 1. Then PCRE will backtrack one step
and use n - 1 characters to match the (a ? { n }) part and
will fail again. Continue this way, it needs to traverse O(2n)
paths before it finally succeeds by using zero ' a' to match the
(a ? { n }) part, n characters of 'a' to match a { n} , and zero
'a' to match the back reference part \ 1. As the value of n gets
large, the number of traversal paths increases exponentially,
which will cause PCRE to abort the backtracking process when
the size of the stack is too large. In our experimentation, we
observed that PCRE failed to give correct matching results
when n 2: 25, while our implementation always returns
correct results for all input traces. The failure of PCRE for
patterns when n 2: 25 is mainly due to that PCRE aborts the

100000000

QI 10000000 -
...
>

1000000 I--- I--- -.0
........
QI

100000 v I--- -
>

..!:!. 10000 t--- 1-
QI

1000 1-
. .it

100 v 1- - - -
QI
><

w 10 I-

I

5 10 15 20 25 0

opeRE o NFA-backref

Fig. 4: Execution time (cycles/byte) of different implementa
tions for the Patho-O 1 data set, the smaller the better. It can be
observed that NFA-backref resists the Algorithmic Complexity
Attack and it is at least three orders of magnitude (1000+
times) faster than PCRE for n 2: 25.

-

f-- f---

- f-- f-- f-- ,--
f-- - -

- r-- r--
r-- - -

- r-- r-- f-- - -

(a) Execution time with benign (b) Execution time with patho-
trace J ogicaJ trace

Fig. 5: Execution time (cycles/byte) of different implemen
tations for the Snort-46 pattern set, the smaller the better.
NFA-backref outperforms PCRE by two to three orders of
magnitude when the pathological trace is used as input.

recursive backtracking when the size of recursive stack is over
a threshold.

Figure 5 shows the execution time of different imple
mentations for the Snort-46 data set. Figure Sa shows the
performance with the benign trace, and Figure 5b shows the
performance with the pathological trace. It can be observed
that PCRE is about one order of magnitude faster than NFA
backref when the benign trace is used as input strings. How
ever, NFA-backref is two to three orders of magnitude faster
than PCRE for the pathological trace. The low performance
of PCRE in Figure 5b is due to that the pathological trace
triggers PCRE to do exhaustive recursive backtracking during
pattern matching.

Both Figure 4 and Figure S show that our approach (NFA
backref) is immune to the Algorithmic Complexity Attack.
Under pathological traces, our NFA-backref implementation
outperforms PCRE by orders of magnitude. Although NFA-

backref is slower than PCRE for benign traces, we argue
that NFA-backref is a better implementation because network
security tools, e.g. , NIDS, are often exposed to attacking
network traffic, in which an attacker may deliberately craft
pathological network contents to perform a DoS attack to a
recursive backtracking-based pattern matching engine. Thus,
we believe that our approach is better suited to be deployed
to process hostile network traffic.

VI. RELATED WORK

Pattern matching in practice demonstrates a time/space
tradeoff. DFA-based approaches are time efficient, but suffer
from state blow-up. NFA-based approaches are space efficient,
but are slow in operation. Recursive backtracking-based ap
proach is fast in general, but can be orders of magnitude slower
under an Algorithmic Complexity Attack. The time/space
tradeoff has spurred a lot of recent research, primarily fo
cused on patterns that can be described by regular languages
(regular expressions). Many researchers aimed at reducing the
memory foot prints of DFA-based approaches [22], [28], [12],
[19], [20], some researchers worked on improving the time
efficiency of NFA-based approaches with hardware [10], [14],
[5], [17] or software solutions [25], [26].

Patterns used in real-world security tools are often regular
expressions with extended features. One of the important
features, submatch extraction, is discussed in [27]. Another
important one, back reference is discussed in this paper.
Up to now, not much work has been done on submatch
extraction and back reference. Existing approach on submatch
extraction include Google's RE2 [7], Haber et a!.'s DFA
based algorithm [8], Laurikari's tagged-NFA approach [13],
and Yang et al.'s Submatch-OBDD model [27]. However, RE2
does not support back references. Recursive backtracking is
the de facto approach to implement back references and has
been adopted by tools such as PCRE and regular expression
libraries in many high level languages such as Java, Python,
and Perl [6]. As we have shown, a recursive backtracking
based implementation suffers from the Algorithmic Complex
ity Attacks. Becchi and Crowley proposed to model a back
reference problem with an automaton-like machine [3]. Their
approach constructs a special state for each back reference
instance. Substrings are recorded in a back reference state and
are matched in a consuming way. Becchi's approach works in
the situation when there is only one back reference instance
for a capturing group but fails when there are multiple back
reference instances for a same capturing group. Also, it is not
clear how Becchi's approach performs because no execution
time was reported in their paper. Namjoshi and Narlikar
presented an automaton-based back reference approach [15]
similar to [3]. Our approach differentiates from [3] and [15]
in that we do not construct special states or input symbols
for back references. Instead, we treat all the states in an
NFA-like machine in the same manner, and add constraints
to the acceptance condition of the constructed tagged-NFA.
In addition, we have shown that our approach is immune to
known Algorithmic Complexity Attacks.

VII. CONCLUSION

In this paper, we present a new matching algorithm for
patterns with back references. Our approach works by trans
forming a back reference problem to a conditional submatch
extraction problem, which in turn, is compiled to a tagged
NFA subject to some constraints. We build a toolchain and
evaluate the performance of our approach using both synthetic
data set and data set from real-world NIDS. Our experimental
results show that our implementation NFA-backref is immune
to known Algorithmic Complexity Attacks. In particular, NFA
backref is about three orders of magnitude faster than PCRE, a
recursive backtracking-based pattern matching engine. Under
benign traffic, NFA-backref is one order of magnitude slower
than PCRE. We believe that our approach is better suited for
network security tools because such tools are often exposed to
hostile network traffic that can abuse a recursive backtracking
based pattern matching engine. We believe that the perfor
mance of NFA-backref can be further improved with better
code optimization.

REFERENCES

[I] A. Y. Aho. Algorithms for finding patterns in strings. In Handbook of
Theoretical Computer Science, Volume A: Algorithms and Complexity
(A), pages 255-300. 1990.

[2] A. Y. Aho and M. J. Corasick. Efficient string matching: An aid to
bibliographic search. Comm. ACM, 18(6):333-340, 1975.

[3] M. Becchi and P. Crowley. Extending finite automata to efficiently match
perl-compatible regular expressions. In Proceedings of the 2008 ACM
CoNEXT Conference, CoNEXT '08, pages 25:1-25:12, New York, NY,
USA, 2008. ACM.

[4] R. S. Boyer and J. S. Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):62-72, 1977.

[5] C. R. Clark and D. E. Schimmel. Scalable pattern matching for
high-speed networks. In IEEE Symp. on Field-Programmable Custom
Computing Machines, pages 249-257. IEEE Computer Society, 2004.

[6] R. Cox. Regular expression matching can be simple and fast (but is
slow in Java, Perl, PHP, Python, Ruby, ...), 2007. http://swtch.com!
�rsc/regexp/regexp l.html.

[7] R. Cox. Implementing regular expressions. http://swtch.com/�rsc/
regexp/, Last retrieved in August 2011.

[8] S. Haber, W. Horne, P. Manadhata, M. Mowbray, and P. Rao. Efficient
submatch extraction for practical regular expression. In The 7th Interna

tional Conference on Language and Automata Theory and Applications,
Bilbao, Spain, April 2013.

[9] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation, Third Edition. Addison-Wesley,
2007.

[l0] B. L. Hutchings, R. Franklin, and D. Carver. Assisting network intrusion
detection with reconfigurable hardware. In Annual Symp. on Field
Programmable Custom Computing Machines, pages 111-120. IEEE
Computer Society, 2002.

[11] D. E. Knuth, J. Morris, and Y. R. Pratt. Fast pattern matching in strings.
SIAM fournal of Computing, 6(2):323-350, 1977.

[12] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner. Al
gorithms to accelerate multiple regular expressions matching for deep
packet inspection. In ACM SIGCOMM Conference, pages 339-350.
ACM, 2006.

[13] Y. Laurikari. NFAs with tagged transitions, their conversion to deter
ministic automata and application to regular expressions. In SPIRE'OO,

September 2000.
[14] A. Mitra, W. Najjar, and L. Bhuyan. Compiling PCRE to FPGA for

accelerating Snort IDS. In Symp. on Arch. for Networking and Comm.
Systems, pages 127-136. ACM, 2007.

[15] K. Namjoshi and G. Narlikar. Robust and fast pattern matching for in
trusion detection. In Proceedings of the 29th conference on Information
communications, INFOCOM'IO, pages 740-748, Piscataway, NJ, USA,
2010. IEEE Press.

[l6] PCRE. The Perl compatible regular expression library. http://www.pcre.
org.

[17] R. Sidhu and V. Prasanna. Fast regular expression matching using
FPGAs. In Symp. on Field-Programmable Custom Computing Machines,
pages 227-238. IEEE Computer Society, 2001.

[l8] R. Smith, C. Estan, and S. Jha. Backtracking algorithmic complexity
attacks against a NIDS. In Annual Computer Security Applications

Con!, pages 89-98. IEEE Computer Society, 2006.
[l9] R. Smith, C. Estan, and S. Jha. XFA: Faster signature matching with

extended automata. In Symp. on Security and Privacy, pages 187-201.
IEEE Computer Society, 2008.

[20] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating the Big Bang: Fast
and scalable deep packet inspection with extended finite automata. In
SIGCOMM Conference, pages 207-218. ACM, 2008.

[21] Snort. Download snort rules. http://www.snort.org/snort-rules/, Last
retrieved in March 2013.

[22] R. Sommer and v. Paxson. Enhancing byte-level network intrusion
detection signatures with context. In Con! on Computer and Comm.
Security, pages 262-271. ACM, 2003.

[23] K. Thompson. Programming techniques: Regular expression search
algorithm. Commun. ACM, 11:419-422, June 1968.

[24] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. TR
94-17, Department of Computer Science, University of Arizona, 1994.

[25] L. Yang, R. Karim, V. Ganapathy, and R. Smith. Improving nfa-based
signature matching using ordered binary decision diagrams. In RAlD'IO,
volume 6307 of Lecture Notes in Computer Science (LNCS), pages 58-
78, Ottawa, Canada, September 2010. Springer.

[26] L. Yang, R. Karim, V. Ganapathy, and R. Smith. Fast, memory-efficient
regular expression matching with nfa-obdds. Computer Networks,
55(15):3376-3393, October 2011.

[27] L. Yang, P. Manadhata, W. Horne, P. Rao, and V. Ganapathy. Fast sub
match extraction using obdds. In Proceedings of the eighth ACMllEEE
symposium on Architectures for networking and communications sys
tems, ANCS '12, pages 163-174, New York, NY, USA, 2012. ACM.

[28] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast
and memory-efficient regular expression matching for deep packet
inspection. In ACMllEEE Symp. on Arch. for Networking and Comm.

Systems, pages 93-102, 2006.

