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Abstract-Modern network security applications, such as 
network-based intrusion detection systems (NIDS) and firewalls, 
routinely employ deep packet inspection to identify malicious 
traffic. In deep packet inspection, the contents of network traffic 
are matched against patterns of malicious traffic to identify 
attack-carrying packets. The pattern matching algorithms em
ployed for deep packet inspection must be fast, as the algorithms 
are often implemented on middle-boxes residing on high-speed 
gigabits per second links. The majority of patterns employed in 
network security applications are regular languages. However, 
regular language-based patterns have limited expressive power 
and are not capable of describing some complex features in 
network payload. Back reference is an important feature pro
vided by many pattern matching tools, e.g., PCRE, the regular 
expression libraries of Java, Perl, and Python. Back references 
are used to identify repeated patterns in input strings. Patterns 
containing back-references are non-regular languages. Very little 
work has been done to improve the time-efficiency of back 
reference-based pattern matching. The de facto algorithm to 
implement back reference is recursive backtracking, but it is 
vulnerable to algorithmic complexity attacks. In this paper, we 
present a novel approach to implement back references. The 
basic idea of our approach is to transform a back reference 
problem to a conditional submatch problem, and represent it 
with a Non-deterministic Finite Automata (NFA)-like machine 
subject to some constraints. Our experimental results show that 
our approach resists known algorithmic complexity attacks, and 
is faster than PCRE by up to three orders of magnitude for 
certain types of patterns. 

Index Terms-Pattern matching; Back reference; Finite au
tomaton; Network-based Intrusion Detection System. 

I. INTRODUCTION 

Network security applications, e.g. ,  network-based intrusion 
detection systems (NIDS) and firewalls, perform deep packet 
inspection to identify malicious traffic. In deep packet in
spection, the contents of network traffic are matched against 
patterns of malicious traffic to identify attack-carrying packets. 
In the past, patterns were represented by keywords that could 
be efficiently matched using string matching algorithms, e.g. , 
KMP [11], Boyer-Moore [4], Wu-Manber [24], and Aho
Corasick [2]. The increasing complexity of network attacks 
has lead the community to employ more expressive represen
tations, which require the full power of regular expressions. 

Strictly speaking, regular expressions denote patterns that 
can be described by regular languages. However, this term 
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has been extended to represent patterns that have non-regular 
language features. Among these features, capturing groups and 
back references are two important ones. A capturing group is 
used to specify a sub-expression of a regular expression, and a 
back reference denotes a repeated sub-expression in a regular 
expression. Many pattern matching tools, e.g. ,  PCRE [16], the 
regular expression libraries of Java, Perl, and Python, support 
capturing groups and back references. Patterns containing back 
references are non-regular languages [7]. 

Patterns with back references are more expressive than 
regular languages. For example, suppose we want to match 
a pair of XML tags and the text in between. It will 
be hard to represent this pattern if we are only al
lowed to use regular languages because tags in an XM
L file may be unknown beforehand. In this case, a back 
reference can easily describe the pattern. For example, 
"< ( [A -Z] [A -Z 0 -9] *) [�>] * > . *? < / \ 1 >" can be used 
to match a pair of XML tags and the text in between, where 
the first capturing group (subexpression within the pair of 
parentheses) is used to capture an XML tag, and the "\ 1 " 
denotes that the captured tag will be reused at the end (before 
the '>' symbol) of the pattern. A pattern can have multiple 
back references, where each of them refers to a different 
capturing group. Multiple back references can be sequentially 
named by a '\' followed by different numbers. For example, 
three back references can be named as "\ 1 ", " \ 2 ", and 
"\3". One back reference can also appears multiple times in 
a pattern, e.g. , " ([a-c] ) x\lx\l". Back references are also 
employed by modern NIDS to represent attack signatures. For 
example, the HTTP rule set of Snort 2012 has 167 patterns 
containing back references [21]. 

Since patterns containing back references are non-regular 
languages, they cannot be represented by finite automata, 
i.e. , non-deterministic finite automata (NFAs) or deterministic 
finite automata (DFAs), as finite automata are equivalent 
representations of regular languages. Thus, prior approaches 
on NFAs or DFAs could not be applied to back references. 
In fact, very little work has been done for patterns containing 
back references. As pointed out by Cox [6], "No one knows 
how to implement pattern with back references efficiently, 
though no one can prove that it's impossible either". Specifi
cally, the back reference problem is NP-complete [1]. The de 
facto algorithm for back references is recursive backtracking. 



However, recursive backtracking is vulnerable to algorithmic 
complexity attacks [18]. For example, the throughput of PCRE 
quickly decreases to nearly zero mega-byte/second for patterns 
in the form of " (a? { n) ) a { n} \ 1 "  (n = 5,10,15,20,25,30) 
with input strings in the form of an (i.e. , a is repeated n 
times). In fact, we observed that PCRE fails to return correct 
results for n ?: 25 on a Linux machine with a typical hardware 
configuration. Can we find an approach that can address back 
references but resist known algorithmic complexity attacks? In 
this paper, we explore the answer to this question. 

A. Our Contribution 

We present a novel approach to implement pattern matching 
with back references. The basic idea of our approach is to 
transform a back reference problem to a conditional sub match 

problem, and represent a conditional submatch problem using 
an NFA-like machine subject to some constraints. We evaluate 
the feasibility of our approach with a software-based imple
mentation, using both synthetic patterns and patterns from real
world NIDS. Our experimental results show that our approach 
resists known algorithmic complexity attacks and is faster 
than PCRE by three orders of magnitude for certain types 
of patterns. 

The remainder of this paper is organized as follows. Sec
tion II provides some background of the problem. Section III 
presents the design of our algorithm for patterns with back 
references. Sections IV and V present the implementation and 
the experimental evaluation of our approach, and Section VI 
discusses the related work. Section VII concludes our work. 

II. BACKGROUND 

A. Finite Automata and Regular Expressions 

Finite automata are natural representations for regular ex
pressions. It is known that regular expressions, deterministic 
finite automata (DFAs), and non-deterministic finite automata 
(NFAs) are equivalent in terms of expressive power. Therefore, 
regular expression matching can be performed by operating the 
corresponding NFAs or DFAs. Given a regular expression, we 
can use Thompson's algorithm [23] to construct an NFA that 
recognizes the same language as the given regular expression. 
An NFA can be converted to a DFA that recognizes the same 
language using the subset construction algorithm [9]. For a 
regular expression of length m, with an input string of length 
n, the time complexities of the DFA-based algorithm and 
Thompson's NFA-based algorithm are O(n) and O(m x n) 
respectively. However, their space complexities are O(2m) 
and O(m). In other words, DFA-based algorithms are time 
efficient but space inefficient; NFA-based algorithms are space 
efficient, but often much slower than DFA-based algorithm
s [7]. 

B. Recursive Backtracking-based Matching 

Another way to simulate an NFA is using recursive back
tracking. The algorithm operates in a depth-first-search style. 
For a current state with the ith symbol in an input string, 
the algorithm processes all states in the next set of states in 

a depth-first-search way. A recursive backtracking algorithm 
may have to scan an input string multiple times before it finds 
a match. Tools like PCRE and the regular expression libraries 
in many high level languages such as Java, Perl, and Python 
implement pattern matching using recursive backtracking. As 
it was pointed out by Cox, recursive backtracking based 
matching can be extremely slow in some cases [7]. 

C. Algorithmic Complexity Attack 

As we described in Section I, recursive backtracking is 
the de facto implementation of back references. However, a 
recursive backtracking matching algorithm can be extremely 
slow in certain cases, as is shown by an example below. 

Figure 1 shows the process of using recursive 
backtracking algorithm to match the pattern 
"host. *com. *uuid=. *wv=. *cargo" with the 
following string that has 45 characters: 

"hostcomhostcomhostcomuuid=uuid=uuid=wv=wv=wv=" 

We denote the five parts separated by " . *" in the pattern 
by PI, P2, P3, P4, and P5 respectively, i.e. ,  Pl="host", 
P2="com", etc. A number on an edge between two nodes in 
the figure denotes an offset where a subexpression Pi (i = 

1 . . .  5) is matched in the input string. For example, the 
leftmost edge between PI and P2 is labeled by 3, which 
means that "ho s t" is matched by the input string at offset 
3. The above pattern is matched by an input string if and 
only if PI, P2, P3, P4, and P5 are sequentially matched 
by the input string. It can be observed that a backtracking 
approach needs to try 45 paths for the input string before 
it can claim that the example pattern is not matched by the 
example input string. In general, for a pattern that has k parts 
separated by wildcard characters " . *", the running time of a 
backtracking algorithm can be close to O(nk) [18], where n 
is the length of the input string. Such a behavior that triggers 
a backtracking algorithm to exhaustively try all execution 
paths for input strings is called the Algorithmic Complexity 

Attack. Researchers have demonstrated that the throughput of a 
NIDS employing recursive backtracking for pattern matching 
can be slowed down by several orders of magnitude under 
Algorithmic Complexity Attacks [18]. 

III. DESIGN OF OUR ALGORITHM 

The basic idea of our approach to address back reference 
is to transform a back reference problem to a conditional 
submatch problem, and represent the conditional submatch 
problem using an NFA-like machine subject to some con
straints. Our approach includes two phases: compilation and 
execution. During the compilation phase, patterns with back 
references are compiled to tagged-NFAs subjected to some 
constraints. During the execution phase, pattern matching is 
performed by operating the tagged-NFAs generated at the 
compilation phase with input strings. 

A. Pattern Compilation 

We introduce a relax plus constrain approach to tackle the 
back reference problem. The compilation process is shown in 



Fig. 1: An example path tree traversed by the recursive backtracking agorithm. 

Algorithm 1. Relax refers to re-writing a regular expression 
with back references to a regular expression that only contains 
capturing groups. During re-writing, a back reference part is 
replaced by the capturing group that is referred by the back 
reference. By doing this, a back reference and its referred 
capturing group become a pair of capturing groups in the 
re-written regular expression. To make the re-written pattern 
be equivalent to the original pattern, we add a constraint to 
the accept condition such that the submatches returned by 
the capturing group pair are equal. The re-writing operation 
is shown in line 1 of Algorithm 1, where p is the re
written expression and C denotes the constraint added to the 
accept condition. For example, pattern "( a * ) aa \ 1 "  can be 
re-written as "( a * ) aa (a * ) " with the constraint such that 
"$ 1=$2 ", where "$ 1 " and "$2 "  denote the first and second 
submatches captured by the two capturing groups. 

Once a pattern with one or more back references is 
transformed to a pattern of conditional submatch extraction, 
we can construct an NFA-like machine (a tagged-NFA) that 
is equivalent to the converted pattern using a Thompson's 
like algorithm. The algorithm starts from three basic cases: 
tagged-NFAs of E expression, empty expression, and a symbol 
wrapped by a capturing group. More complex tagged-NFAs 
can be constructed using the union, concatenation, and closure 
constructs. The construction process bears some similarity to 
constructing a tagged-NFA described in [27]. As we will see 
soon, the difference lies in how to operate a tagged NFA. 
Recall that we add a equal substrings constraint to a re
written pattern in order to make it equivalent to its original 
pattern. Thus, we need a mechanism to maintain substrings 
matched by the capturing groups in a re-written pattern. To 
do so, a tagged NFA needs to have a data structure allowing 
for bookkeeping of captured substrings. The data structure 
we use is to associate each state with a pair of substrings 
(multiple pairs of substrings are needed if there are multiple 
back references). For transitions within a capturing group, we 
add the corresponding input symbols into captured substrings. 
For transitions that are not within any capturing group, we just 
carry over the captured substrings from state to state. When 
a tagged-NFA reaches a final state, we check whether there 

Algorithm: Pattern Compilation 
Input : A pattern r 
Output : A tagged-NFA with constraints 

1 (p, C)=re-write( r); 
2 (Q, L;, T, 6, qo, Fin) = compile(p) ; 
3 return ((Q, L;, T, 6, qo, Fin), C); 

a pattern 

exists a pair of equal captured strings. If so, an input string is 
matched by the tagged-NFA. To be more formal, we denote a 
tagged NFA as a 6-tuple (Q, L;, T, 6, qo, Fin), where Q is the 
state set, L; is an alphabet set, T is a tag set, qo is the start 
state, Fin is a set of final states, and 6 is a transition function 
6 : Q x L;* x L;* x . . .  --+ Q x L;* x L;* x . . .  that maps a current 
state with the captured substrings to a next state with updated 
captured strings. The Thompson's-like process to construct a 
tagged-NFA is described in line 2 of Algorithm 1. 

We now demonstrate the compilation process using the ex
ample pattern " (a * ) aa (a * ) ". After adding tags, the pattern 
is denoted as "(M)t1aa(M)t2'" where tl to t2 are used to 
label the two capturing groups. Figure 2 shows a tagged
NFA constructed from pattern "( a* )tl aa( a* )t2" such that 
"$1=$2 ". It can be observed that the transition from state 1 to 
itself with input symbol 'a' is within the first capturing group, 
and the transition from state 3 to itself with input symbol 'a' 
is within the second capturing group. All other transitions are 
not in any capturing group. 

Similar to traditional NFAs, we can use a transition table to 
represent the transitions of a tagged-NFA. Instead of having 
three columns, the transition table of a tagged-NFA has five 
columns, where the first three columns are same as those in 
a traditional transition table, the fourth column denotes tags 
associated with each transition, and the fifth column specifies 
the actions used for maintaining the substrings matched by 
capturing groups. In our design, we have three types of actions: 
new, update, and carryover, where new and update actions 
are associated with transitions within capturing groups, and 
a carryover action is associated with transitions not in any 



Fig. 2: The tagged-NFA constructed from " (a * ) aa (a * ) ". 
The start state is labeled by I, and the accept state is labeled 
by 3. 

Algorithm: Execution 
Input : An input string str to be matched, 

and a tagged-NFA with constraints 
((Q, L;, T, 6, qo, Fin), C) compiled 
from a pattern. 

Output : true or false 
I current_states = {( qo, "", "", ... )}; 
2 for i=1 to strlen(str) do 
3 nexCstates = {}; 
4 foreach (s, substri , substr2, . . .  ) E 

current_states do 
5 

6 

7 

8 

tern. 

l next states = next states U 

6((s, substrI' substr2,"')' str[i]); 

if (i==strlen(str)) and 
(:3(x, substrl, substr2, ... ) E nexCstates) 
s.t. (x E F in) and 
C(substrl, substr2, ... ) = true then 
I return true; 

current_states = nexCstates; 

capturing group. A new action denotes creating a new captured 
substring using a current input symbol, and an update action 
denotes updating a substring by appending an input symbol 
to the end of the substring. A carryover action denotes that 
captured substrings are copied over from a current state to a 
next state. Table I shows the transition table of the tagged-NFA 
in Figure 2. 

B. Execution 

We now describe how to match a pattern that has back 
references with an input string. The matching process is 
called execution of a compiled pattern and it mainly involves 
two operations: frontier derivation and acceptance checking. 

Frontier derivation refers to how to update the current states 
of a tagged-NFA with an input symbol. Acceptance checking 
refers to checking whether the tagged-NFA is in an accept 
state. The matching algorithm is shown in Algorithm 2, where 
lines 4-5 describe the frontier derivation, and line 6 describes 
the acceptance checking operation. 

1) Frontier Derivation: To allow for the maintenance of 
captured substrings, we denote an element in a frontier set by a 
tuple (x, substrI' substr2 ' . . .  ), where x is a state number, and 
substri and substr2 are substrings matched by the capturing 
groups. In general, if there are k back references, we need a 
(2k + I)-tuple to represent a frontier element. During a match 
test of an input string, the frontier set is initially a singleton set 
{(qo, "", '''', ... )} shown in line 1 of Algorithm 2 (where '''' is 
an empty string denoting that no substring has been captured 
yet) but may include multiple elements during the operation of 
a tagged-NFA. For each symbol in the input string, we must 
process all elements in a frontier set and find a new set of 
elements by applying the transition functions represented by 
the transition table (lines 4-5 in Algorithm 2). Applying a tran
sition function to a frontier element (s, substrI' substr2, . . .  ) 
and an input symbol includes two steps. The first step is a 
table lookup, i.e. , given a state s and symbol I (i), retrieve all 
states that are reachable from s with symbol I (i). The second 
step is to apply one or more actions to the captured substrings 
associated with the state s. In particular, if a transition is a 
start of a capturing group, then a new action is applied; if a 
transition is within a capturing group then an update action is 
applied; and if a transition is not within any capturing group, 
then a carryover action is applied by just copying around the 
captured substrings (if there is any) from a current state to a 
next state. For a pattern with one back reference, the above 
frontier derivation process can be expressed by the following 
Boolean formula: 

g(y, s) = Fo(:3 x·:3 i·:3 t· (t = ¢ 1\ �.F(x, s, i, y, t))) 
V FI (:3 x· :3 i· :3 t· (t = tl 1\ �.F( X, s, i, y, t))) 
V F2(:3 x·:3 i·:3 t· (t = t2 1\ �.F(x, s, i, y, t))) 

where 

�.F (x, s, i, y, t) = F(x, s) 1\ Lu (i) 1\ �(x, i, y, t) (1) 

F(x, s) denotes the current frontier set (s denotes captured 
substrings), Lu (i) denotes an input symbol, and �(x,i,y,t) 
denotes the transition relations of the tagged-NFA. The 
conjunctions in Equation (1) basically selects rows in the 
transition table � (x, i, y, t) that corresponding to outgoing 
transitions from the states in the current frontier set F(x, s) 
labeled with symbol (J. The t = ¢ 1\ �.F(x, S, i, y, t) in 
9 (x) selects transitions that are not in any capturing group, 
t = it 1\ �.F(x, S, i, y, t) selects transitions that are labeled 
by it (first capturing group), and t = t2 1\ �.F (x, S, i, y, t) 
selects transitions labeled by t2 (second capturing group). 
Function Fo denotes a carryover action; function FI denotes 
applying a new or update action to substrings captured by 
the first capturing group; and function F2 denotes applying 
a new or update action to substrings captured by the second 
capturing group. Renaming the y to x in 9 (y, s) gives us the 
new frontier set 9 (x, s) . The frontier derivation formulae for 
patterns with multiple back references are similar, except that 
more tags ti(i = 1,2, . . .  ) are involved. 



Current state( x) Input symbo\( i) Next state(y) Tag(t) Action 
1 a 1 tl newt tl} or update ( td 
1 a 2 if; carry_over(tl} 
2 a 3 if; carry_over(tl} 
3 a 3 t2 new(t2} or update(t2} 

TABLE I: Transition table of the tagged-NFA in Figure 2. 

Example Consider the example tagged-NFA in Figure 2 with 
input string "aaaa". Initially, the frontier set is a singleton set 
{(l, "", "")}. For the first input symbol 'a', we can get that 
the next state can be state 1 or 2 according to the transition 
table in Table I. The fourth column of the transition table 
indicates that the transition from state 1 to 1 is associated 
with a new(tl ) function, which means we need to create a 
new substring for the first capturing group using the current 
input symbol 'a'. The transition from state 1 to 2 is associated 
with a carTy_over(tI) action. Since no substring has been 
captured in (1, "", ""), nothing needs to be copied from state 
1 to state 2. As a result, the new frontier set has two elements, 
. 

{(1 " "  "") (2 "" "")} I.e. , , a, , , , . 
Renaming {(l, "a", ""), (2, "", "")} as the current frontier 

set, with the second input symbol 'a', we can obtain the next 
frontier set as {(I, "aa", ""), (2, "a", ""), (3, "", "")}. Using 
the same method to process the third and fourth input symbols. 
After processing the fourth input symbol 'a', the frontier set 
is {(I, "aaaa", ""), (2, "aaa", ""), (3, "aa", ""), (3, 
"a", "a"), (3, "", "aa")}. 

2) Acceptance Checking: The accept condition of a tagged
NFA is: at the end of an input string, there exist a tuple 
(x, substrl, substr2, . . .  ) in the frontier set such that x E Fin 
is a final state, and substrl equals substr2 (for patterns with 
one instance of back reference). If there are k different back 
references, we need to have k pairs of captured substrings, 
where the two substrings in each pair are equal (shown as 
C(substr1, substr2, ... ) = true in line 6 of Algorithm 2). 
For the example tagged-NFA with input string "aaaa", it can 
be observed that there is one element, i.e. ,  (3, "a", "a"), 
in the frontier set satisfying the acceptance condition after 
processing the fourth input symbol 'a'. Therefore, the input 
string "aaaa" is accepted by the tagged-NFA, which means 
the input string matches pattern (a * ) a a \ 1. 

Remarks: We note that our approach for back reference can 
be employed to do submatch extraction as well. In that case, 
nothing needs to be added as constraint to a tagged-NFA. The 
main benefit is that this approach is capable of performing 
pattern matching and submatch extraction by just scanning 
the input string in a single pass. 

IV. IMPLEMENTATION 

We evaluated our approach using a software-based imple
mentation, dubbed as NFA-backref. The implementation is in 
C++ and has two components: a compilation component and 
an execution component, as shown in Figure 3. The com
pilation component reads patterns with back references and 
compiles them into tagged-NFAs with constraints as described 

with constraints 

Fig. 3: The overview of our software-based back reference 
implementation. 

in Section III-A. The execution component loads compiled 
patterns (tagged-NFAs) and matches them with a stream of 
input strings. In our implementation, captured substrings are 
represented by their starting and ending offsets in the input 
strings. In this way, substrings do not have to be copied around 
from states to states. Each substring is represented using only 
two integers, which saves space and reduces overhead of string 
copy operation. 

V. EVALUATION 

We evaluated the performance of our approach using both 
synthetic patterns and patterns from real-world NIDS. Our 
experimental results show that our approach is immune to 
Algorithmic Complexity Attacks. 

A. Experimental Setup 

All our experiments were performed on a Intel Core2 Duo 
E7500 Linux-2.6.27 machine, running at 2.93GHz with 2GB 
of RAM (however, our programs are single-threaded, and only 
used one of the available cores). We instrumented the matching 
tool to report its execution time using processor performance 
counters. We report the performance of execution as the num
ber of CPU cycles to process each symbol (cycles/byte), i.e. , 
fewer processing cycles/byte implies greater time-efficiency. 

B. Data Sets 

We evaluated the performance of different implementations 
using the following two data sets: 

a) Patho-Ol: Patterns in this data set are in the form 
of ( a ? { n } ) a { n } \ 1, where the ? character is a 0 or 1 
quantifier. This pattern will match a string starting with zero 
or one 'a' repeated by n times, followed by n characters of 
'a', followed by the substring captured by the first capturing 
group. We evaluated the pattern for n = 5,10,15,20,25, and 
30. For each pattern, we use input string in the form of an, i.e. ,  
'a' repeated by n times, which will be matched by a pattern 
with the same value of n. 



b) Snort-46: The second data set includes 46 patterns 
containing back references from the Snort HTTP signature 
set. We use two input traces to evaluate this pattern set. The 
first trace, which we call benign trace, was generated using a 
string generator created by ourselves. Given a set of patterns 
and a user expected match percentage p, the string generator 
generates a trace file where p percent of strings are matched 
by at least one pattern in the pattern set. The size of the benign 
trace we generated in our evaluation is 5MB. The second trace 
was manually crafted after carefully reviewing the 46 patterns. 
We found that at least one of these patterns will suffer from the 
Algorithmic Complexity Attacks if a pattern matching engine 
is implemented using the recursive backtracking approach. 
We thus manually created a 100KE pathological trace using 
the approach described in [18] to evaluate how different 
implementations perform under an Algorithmic Complexity 
Attack. 

C. Peiformance 

We measure the time efficiency of different implementations 
using the number of CPU cycles required for processing each 
byte of input trace (cycle/byte). We evaluate the performance 
of two implementations: Our approach (NFA-backref), and 
PCRE using the data sets described in Section V-B. We did 
not measure the space efficiency of different implementations 
since both NFA-based approach and recursive backtracking are 
space efficient, as presented in [2S] and [27]. 

Figure 4 shows the execution time of different implemen
tations for the Patho-Ol data set. The x-axis denotes the value 
of n in pattern (a? { n } ) a { n } \ 1, and the y-axis denotes the 
execution time in unit of cycle/byte. It can be observed that 
PCRE is a slower implementation as n increases from 5 to 
30. NFA-backref is faster than PCRE by at least three orders 
of magnitude (i.e. , 1000+ times) after n 2: 25. 

As shown in Figure 4, PCRE performs extremely slow 
for this pattern set. This is mainly because that PCRE per
forms exhaustive recursive backtracking when matching an 
input string an (i.e. , 'a' repeated n times) against pattern 
(a? { n } ) a { n } \ 1. During a recursive backtracking, the first 
matching path that is tried by PCRE is to match the n 

characters of 'a' with the (a? { n }) part of the pattern. This 
path will fail because there is no characters to match the 
remaining part a { n } \ 1. Then PCRE will backtrack one step 
and use n - 1 characters to match the ( a ? { n }) part and 
will fail again. Continue this way, it needs to traverse O(2n) 
paths before it finally succeeds by using zero ' a' to match the 
( a ? { n }) part, n characters of 'a' to match a { n} , and zero 
'a' to match the back reference part \ 1. As the value of n gets 
large, the number of traversal paths increases exponentially, 
which will cause PCRE to abort the backtracking process when 
the size of the stack is too large. In our experimentation, we 
observed that PCRE failed to give correct matching results 
when n 2: 25, while our implementation always returns 
correct results for all input traces. The failure of PCRE for 
patterns when n 2: 25 is mainly due to that PCRE aborts the 
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Fig. 4: Execution time (cycles/byte) of different implementa
tions for the Patho-O 1 data set, the smaller the better. It can be 
observed that NFA-backref resists the Algorithmic Complexity 
Attack and it is at least three orders of magnitude (1000+ 
times) faster than PCRE for n 2: 25. 
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Fig. 5: Execution time (cycles/byte) of different implemen
tations for the Snort-46 pattern set, the smaller the better. 
NFA-backref outperforms PCRE by two to three orders of 
magnitude when the pathological trace is used as input. 

recursive backtracking when the size of recursive stack is over 
a threshold. 

Figure 5 shows the execution time of different imple
mentations for the Snort-46 data set. Figure Sa shows the 
performance with the benign trace, and Figure 5b shows the 
performance with the pathological trace. It can be observed 
that PCRE is about one order of magnitude faster than NFA
backref when the benign trace is used as input strings. How
ever, NFA-backref is two to three orders of magnitude faster 
than PCRE for the pathological trace. The low performance 
of PCRE in Figure 5b is due to that the pathological trace 
triggers PCRE to do exhaustive recursive backtracking during 
pattern matching. 

Both Figure 4 and Figure S show that our approach (NFA
backref) is immune to the Algorithmic Complexity Attack. 
Under pathological traces, our NFA-backref implementation 
outperforms PCRE by orders of magnitude. Although NFA-



backref is slower than PCRE for benign traces, we argue 
that NFA-backref is a better implementation because network 
security tools, e.g. ,  NIDS, are often exposed to attacking 
network traffic, in which an attacker may deliberately craft 
pathological network contents to perform a DoS attack to a 
recursive backtracking-based pattern matching engine. Thus, 
we believe that our approach is better suited to be deployed 
to process hostile network traffic. 

VI. RELATED WORK 

Pattern matching in practice demonstrates a time/space 
tradeoff. DFA-based approaches are time efficient, but suffer 
from state blow-up. NFA-based approaches are space efficient, 
but are slow in operation. Recursive backtracking-based ap
proach is fast in general, but can be orders of magnitude slower 
under an Algorithmic Complexity Attack. The time/space 
tradeoff has spurred a lot of recent research, primarily fo
cused on patterns that can be described by regular languages 
(regular expressions). Many researchers aimed at reducing the 
memory foot prints of DFA-based approaches [22], [28], [12], 
[19], [20], some researchers worked on improving the time 
efficiency of NFA-based approaches with hardware [10], [14], 
[5], [17] or software solutions [25], [26]. 

Patterns used in real-world security tools are often regular 
expressions with extended features. One of the important 
features, submatch extraction, is discussed in [27]. Another 
important one, back reference is discussed in this paper. 
Up to now, not much work has been done on submatch 
extraction and back reference. Existing approach on submatch 
extraction include Google's RE2 [7], Haber et a!.'s DFA
based algorithm [8], Laurikari's tagged-NFA approach [13], 
and Yang et al.'s Submatch-OBDD model [27]. However, RE2 
does not support back references. Recursive backtracking is 
the de facto approach to implement back references and has 
been adopted by tools such as PCRE and regular expression 
libraries in many high level languages such as Java, Python, 
and Perl [6]. As we have shown, a recursive backtracking 
based implementation suffers from the Algorithmic Complex
ity Attacks. Becchi and Crowley proposed to model a back 
reference problem with an automaton-like machine [3]. Their 
approach constructs a special state for each back reference 
instance. Substrings are recorded in a back reference state and 
are matched in a consuming way. Becchi's approach works in 
the situation when there is only one back reference instance 
for a capturing group but fails when there are multiple back 
reference instances for a same capturing group. Also, it is not 
clear how Becchi's approach performs because no execution 
time was reported in their paper. Namjoshi and Narlikar 
presented an automaton-based back reference approach [15] 
similar to [3]. Our approach differentiates from [3] and [15] 
in that we do not construct special states or input symbols 
for back references. Instead, we treat all the states in an 
NFA-like machine in the same manner, and add constraints 
to the acceptance condition of the constructed tagged-NFA. 
In addition, we have shown that our approach is immune to 
known Algorithmic Complexity Attacks. 

VII. CONCLUSION 

In this paper, we present a new matching algorithm for 
patterns with back references. Our approach works by trans
forming a back reference problem to a conditional submatch 
extraction problem, which in turn, is compiled to a tagged
NFA subject to some constraints. We build a toolchain and 
evaluate the performance of our approach using both synthetic 
data set and data set from real-world NIDS. Our experimental 
results show that our implementation NFA-backref is immune 
to known Algorithmic Complexity Attacks. In particular, NFA
backref is about three orders of magnitude faster than PCRE, a 
recursive backtracking-based pattern matching engine. Under 
benign traffic, NFA-backref is one order of magnitude slower 
than PCRE. We believe that our approach is better suited for 
network security tools because such tools are often exposed to 
hostile network traffic that can abuse a recursive backtracking 
based pattern matching engine. We believe that the perfor
mance of NFA-backref can be further improved with better 
code optimization. 
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