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Abstract. We address the challenge of detecting and addressing
advanced persistent threats (APTs) in a computer network, focusing
in particular on the challenge of detecting data exfiltration over Domain
Name System (DNS) queries, where existing detection sensors are imper-
fect and lead to noisy observations about the network’s security state.
Data exfiltration over DNS queries involves unauthorized transfer of sen-
sitive data from an organization to a remote adversary through a DNS
data tunnel to a malicious web domain. Given the noisy sensors, previ-
ous work has illustrated that standard approaches fail to satisfactorily
rise to the challenge of detecting exfiltration attempts. Instead, we pro-
pose a decision-theoretic technique that sequentially plans to accumulate
evidence under uncertainty while taking into account the cost of deploy-
ing such sensors. More specifically, we provide a fast scalable POMDP
formulation to address the challenge, where the efficiency of the formu-
lation is based on two key contributions: (i) we use a virtually distrib-
uted POMDP (VD-POMDP) formulation, motivated by previous work
in distributed POMDPs with sparse interactions, where individual poli-
cies for different sub-POMDPs are planned separately but their sparse
interactions are only resolved at execution time to determine the joint
actions to perform; (ii) we allow for abstraction in planning for speedups,
and then use a fast MILP to implement the abstraction while resolving
any interactions. This allows us to determine optimal sensing strategies,
leveraging information from many noisy detectors, and subject to con-
straints imposed by network topology, forwarding rules and performance
costs on the frequency, scope and efficiency of sensing we can perform.

1 Introduction

Advanced persistent threats can be one of the most harmful attacks for any
organization with a cyber presence, as well as one of the most difficult attacks
to defend against. While the end goal of such attacks may be diverse, it is
often the case that intent of an attack is the theft of sensitive data, threatening

c© Springer International Publishing AG 2016
Q. Zhu et al. (Eds.): GameSec 2016, LNCS 9996, pp. 39–61, 2016.
DOI: 10.1007/978-3-319-47413-7 3



40 S.M.M. Carthy et al.

the loss of competitive advantage and trade secrets as well as the leaking of
confidential documents, and endangerment of national security [4,13]. These
attacks are sophisticated in nature and often targeted to the vulnerabilities of a
particular system. They operate quietly, over long periods of time and actively
attempt to cover their tracks and remain undetected. A recent trend in these
attacks has relied on exploiting Domain Name System (DNS) queries in order to
provide channels through which exfiltration can occur [8,20]. These DNS based
exfiltration techniques have been used in well-known families of malware; e.g.,
FrameworkPOS, which was used in the Home Depot data breach involving 56
million credit and debit card information [2].

At a high level, DNS exfiltration involves an attacker-controlled malware
inside an organization’s network, an external malicious domain controlled by the
attacker, and a DNS server authoritative for the domain that is also controlled by
the same attacker. The malware leaks sensitive data by transmitting the data
via DNS queries for the domain; these queries traverse the DNS hierarchy to
reach the attacker controlled DNS server. Attackers can discretely transfer small
amounts of data over long periods of time disguised as legitimate user gener-
ated DNS queries. Detecting and protecting against such an attack is extremely
difficult as the exfiltration attempts are often lost in the high volume of DNS
query traffic and any suspicious activity will not be immediately obvious. In both
academia and industry, multiple detectors have been proposed to detect DNS
exfiltration. However, because of the sophisticated and covert nature of these
attacks, detectors designed to protect against these kinds of attacks either often
miss attacks or are plagued by high false positive rates, misclassifying legitimate
traffic as suspicious, and potentially overwhelming a network administrator with
suspicious activity alerts; these issues have been identified with machine learn-
ing based detectors [23], pattern matching based detectors [1] and information
content measuring detector [19].

We focus on the problem of rapidly determining malicious domains that
could be potentially exfiltrating data, and then deciding whether to block traffic
or not. In our problem, the defender observes a stream of suspicious DNS based
exfiltration alerts (or absence of alerts), and is tasked with inferring which of the
domains being queried are malicious, and determining the best response (block
traffic or not) policy. Unfortunately, as stated earlier, detectors are inherently
noisy and each single alert does not provide a high confidence estimate about
the security state. Thus, the defender needs to come up with a sequential plan
of actions while dealing with uncertainty in the network and in the alerts, and
must weight the cost of deploying detectors to increase their knowledge about
malicious domains with the potential loss due to successful attacks as well as the
cost of misclassifying legitimate network use. This problem of active sensing is
common to a number of cyber security problems; here we focus on the challenge
of data exfiltration over DNS queries.

There has been a large amount of work on how to deal with and make deci-
sion under uncertainty. Problems such as ours can be well modeled using Par-
tially Observable Markov Decision Process (POMDP) to capture the dynamics
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of real-world sequential decision making processes, and allow us to reason about
uncertainty and compute optimal policies in these types of environments. How-
ever a major drawback to these models is that they are unable to scale to solve
any problem instances of reasonable size. In order to be successful in the cyber
domain, such a models needs to be able to handle extremely large problem
instances, as networks are often extremely complex, with lots of moving parts.
Additionally, due to the salient nature of network states, we need to be able to
make decisions in real time in order to observe and quickly react to a potential
threat.

To address this challenge we make the following key contributions: (1) We
provide a formal model of the DNS data exfiltration problem. We propose a
new decision making framework using Partially Observable Markov Decision
Processes (POMDPs). (2) We address the scalability issued faced when dealing
with large networks by proposing a series of abstractions of the original POMDP.
These include using abstract action and observation space. (3) Another step in
the abstraction is a new paradigm for solving these models by factoring the
POMDP into several sub-POMDPs and solving each individual sub-POMDP
separately offline; this is motivated by previous work in distributed POMDPs
with sparse interactions. We provide techniques for policy aggregation to be
performed at runtime in order to combine the abstract optimal actions from
each sub-POMDP to determine the final joint action. We denote this model
as a virtually distributed POMDP (VD-POMDP). We provide conditions under
which our methods are guaranteed to result in the optimal joint policy, and
provide empirical evidence to show that the final policy still performs well when
these conditions do not hold. (4) Finally we provide experimental evaluation
of our model in a real network testbed, where we demonstrate the ability to
correctly identify real attacks.

2 Background and Related Work

We split our discussion of the required background and related work for this
paper along two broad categories that are covered in the two sub-sections below.

2.1 DNS Exfiltration

Sensitive data exfiltration from corporations, governments, and individuals is on
the rise and has led to loss of money, reputation, privacy, and national secu-
rity. For example, attackers stole 100 million credit card and debit card infor-
mation via breaches at Target and Home Depot [11]; a cluster of breaches at
LinkedIn, Tumblr, and other popular web services led to 642 million stolen pass-
words [5]; and the United States Office of Personnel Management (OPM) data
breach resulted in 21.5 million records, including security clearance and finger-
print information, being stolen [27].

In the early days, exfiltration happened over well known data transfer pro-
tocols such as email, File Transfer Protocol (FTP), and Hypertext Transfer
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Protocol (HTTP) [13]. The seriousness of the problem has led to several “data
loss prevention (DLP)” products from the security industry [15,24] as well as
academic research for monitoring these protocols [7,10]. These solutions monitor
email, FTP, and other well known protocols for sensitive data transmission by
using keyword matching, regular expression matching, and supervised learning.

The increased monitoring of the protocols has forced attackers to come up
with ingenious ways of data exfiltration. One such technique used very suc-
cessfully in recent years is exfiltration over DNS queries [1,20]. Since DNS is
fundamental to all Internet communication, even the most security conscious
organizations allow DNS queries through their firewall. As illustrated in Fig. 1,
an adversary establishes a malicious domain, evil.com, and infects a client in
an organization with malware. To exfiltrate a data file, the malware breaks the
file into blocks, b1, b2, · · ·, bn, and issues a sequence of DNS queries, b1.evil.com,
b2.evil.com, · · ·, bn.evil.com. If their responses are not cached, the organization’s
DNS server will forward them to the nameserver authoritative for evil.com; at
this point, the adversary controlling the authoritative nameserver can recon-
struct the data file from the sequence of blocks.
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b3.evil.com
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Fig. 1. Data exfiltration over DNS.

The data transmission is covert and can be accomplished by various means
such as a particular sub-domain query meaning bit 1 and another sub-domain
query meaning bit 0, or even the timing between queries can leak information.
By compressing the data at the client, and by varying query lengths and the
time interval between successive queries an adversary can adjust the bandwidth
of the communication channel. The adversary could choose to transfer data
as quickly as possible (long and rapid domain queries) or slowly (short queries
spaced apart in time), depending on the intent behind the attack. To further hide
exfiltration activity, the data blocks can be encrypted by the client before the
queries are issued, and decrypted by the adversary. Further, the adversary can
encode instructions within its responses to establish a two-way communication
tunnel.

Hence building a reliable DNS exfiltration detector is extremely challenging.
A recent work on building a detector for DNS exfiltration using measurement
of information content of a DNS channel provides techniques that we use to
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build the low level detector in our problem setting [19]. Apart from this work in
academia, there has been some work in the industry that use various heuristics
to build low level detectors for DNS exfiltration [1]; examples of such heuristics
are lengths of DNS queries and responses, sizes of query and response packets,
entropy of DNS queries, total volume of DNS queries from a device, and total
volume of DNS traffic to a domain. As far as we know, we are the first to build
a cost based sequential planning tool that uses the imperfect low level detectors
to determine if a domain is involved in exfiltrating data over DNS.

2.2 POMDP

There has been a large amount of work on how to deal with and make decisions in
stochastic environments under uncertainty using POMDPs. However, it is known
that offline POMDP solving is intractable for large problems [9,14,18] and given
our fast response requirements an online POMDP solver is also not feasible [21].
We show empirically that our original POMDP is simply impractical to solve
for even a small network of 3–4 computers. Thus, in this paper, we focus on
speeding up the offline POMDP solving by performing a series of abstractions
of the original POMDP. Our technique of solving the POMDP is inspired by
conflict resolution techniques in solving distributed POMDP [12,17] and distrib-
uted POMDPs with sparse interactions [25,26]. While our VD-POMDP does
not have an inherent distributed structure, we break up the original POMDP
into multiple domain specific POMDPs to build a virtually distributed POMDP;
this allows for scalability. However, instead of resolving conflicts at runtime or
using sparse interaction (which does not exist in our split POMDPs), we modify
our action space so that the actions output by each domain specific POMDP is
at a higher level of abstraction. With these abstract actions from each POMDP
we provide a fast technique to come up with the joint action by combining the
abstract actions at execution time. The main difference with existing work on
POMDP and distributed POMDP is that we reason about policies at execution
time, allowing efficient “groundlevel” implementation of abstract policy recom-
mendation from multiple virtual POMDPs. Further, the abstraction of actions is
possible in our problem due to the special relation between detecting malicious
domains and sensing of traffic on a network node (see Model section for details).

While, the main step in VD-POMDP compaction is based on similar ideas
of factored POMDPs used in past literature [16], our approach critically differs
as we do not just factor the belief state of the POMDP, but split it into multiple
POMDPs per domain. Also, distinct from general distributed POMDP [6] the
multiple agents (for each domain) do not share a common reward function and
neither is the reward function a sum of each of their rewards (Table 1).

3 Model

The local computer network can represented as a graph G(N,E), where the
nodes N correspond to the set of hosts in the network, with edges E if com-
munication between the hosts is allowed. Each node n has a particular value vn
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Table 1. Notation

G(N, E) Graph representing network

vn Value of data at the nth node

v[d] Average value of the set of channels to the dth domain

wn Volume of traffic at the nth node

w[d] Total volume of the set of channels to the dth domain

d The dth domain

Xd True {0, 1} state of the dth domain

Md Estimated {0, 1} state of the dth domain

X Set of all Xd random variables

ck =< n, . . . d > kth channel from node n to domain d

C[d] Subset of channels ending with the dth domain

C Set of all channels

τk Threshold set for channel ck

an Binary variable indicating if node n is sensed or not

zk Binary variable indicating if channel ck is sensed or not

Ωk {0, 1} observation on kth channel

Ω[d] Subset of observations for channels ending with the dth domain

corresponding to the value of data stored at that computer. At any point in time
t each node has a variable traffic volume of requests wt

n passing through it. We
assume there are D domains, where for tractability we assume D is the number
of domains that have ever been queried for the given computer network. DNS
queries made from internal nodes in the network are forwarded to special nodes,
either access points or internal DNS servers, and then forwarded to external
servers from these points. A channel ck over which exfiltration can occur is then
a path, starting at source node, where the query originated, traveling through
several nodes in the network and finishing at a target domain d. The total num-
ber of channels is K. We use n ∈ ck to denote any node in the path specified
by ck.

Let Xd be a random binary variable denoting whether domain d is malicious
or legitimate. We assume that a malicious domain will always be malicious, and
that legitimate domains will not become compromised; this means that the state
Xd does not change with time. Even though legitimate domains get compromised
in practice, attackers often use new malicious domains for DNS exfiltration since
an attacker needs to control both a domain and the authoritative name server
for a domain to successfully carry out exfiltration. In other words, legitimate
domains that get compromised are rarely used in DNS exfiltration. Hence in
our model, it is reasonable to assume that domains don’t change their states.
We call the active sensing problem, the challenge of determining the values of
Xd. In order to do this we may place detectors at nodes in the network; the
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c1c2 c3c4

c1,c2 c3 c4

d1 d2

n1 n2

src2 src4src1 src3

Fig. 2. Example of a network with two domains, 4 source hosts and 4 channels. Chan-
nels c1, c2, c3 go from sources 1, 2, and 3 to domain d1 while channel c4 goes from
source 4 to domain d2. We may consider the situation where we can only turn on one
detector at any time step, either at node n1 or n2, and choose to sense on channels {c1,
c2} or {c3, c4}. We can additionally chose thresholds τj for each channel. Each source
host has a value vn and each node n has traffic volume wn.

state of a detector (off/on) at any node in the network is an ∈ {0, 1}. Each
detector monitors all the channels passing through that particular node, i.e., all
ck : n ∈ ck. We use the binary variable zk to indicate if channel ck is monitored.
We can set discrete thresholds individually for each channel; lower thresholds
correspond to higher sensitivity to information flow out of any particular channel.
Because each channel is associated with a domain, we set a threshold τk for each
channel. We use |τ | to denote the number of discrete threshold choices available.
We then get observations in the form of alerts for each channel Ωk ∈ {0, 1}.
The probability of receiving an alert for any channel is characterized by some
function α(τk) if the channel is malicious and β(τk) if the channel is legitimate.
Finally, the defender classifies the state of domain d as malicious or legitimate,
indicated by Md.

3.1 The POMDP Model

Our POMDP model is a tuple (S,A, T,Ω,O,R) with state space S, action space
A, state transition function T , observation space Ω, observation probabilities O
and reward function R. Additionally define the average value of the channels
to domain d as v[d] =

∑

n:n∈C[d]

vn

|C[d]| . Below we list the details of components

of POMDP model. The state captures the true security state of every domain
and the actions specify the thresholds for monitoring each channel, the nodes to
be monitored and the decision about which domains are classified as malicious.
As we assume the security state of the system does not change, the transition
function is straightforward.



46 S.M.M. Carthy et al.

States S = 〈X1, . . . XD〉
Actions A = Ac × An × Ad where 〈τ1, . . . τK〉 ∈ Ac, 〈a1 . . . aN 〉 ∈ An

and 〈M1 . . . MD〉 ∈ Ad

Transision T (s′, s) =

{
1 iff s′ = s

0 else

Next, we obtain an observation Ωk for each channel, and as stated earlier for
each channel the probability of an alert is given by functions α and β. We state
the probability first for the observations for each domains, and then for all the
observations using independence across domains.

Observations Ω = 〈Ω1 . . . ΩK〉

Observation Prob O(Ω[d]|Xd, A) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∏

k:k∈C[d]∧zk=1

α(τk)
Ωk (1 − α(τk))

1−Ωk if Xd = 1

∏

k:k∈C[d]∧zk=1

β(τk)
Ωk (1 − β(τk))

1−Ωk if Xd = 0

0 else

O(Ω|X, A) =
∏

d

O(Ω[d]|Xd, A[d])

Finally, the reward for the POMDP is given by the following equation:

R(S, A) = −
(

∑

d

(
Xd(1 − Md)v[d] + (1 − Xd)Mdw[d]

)
+

N∑

n

anwn

)

The reward contains two cost components: the first component has two terms
for each domain that specify the penalty for mislabeling a domain and the second
component is the cost of sensing over the nodes. When a malicious domain d is
labeled safe then the defender pays a cost v[d], i.e., the average value of channels
going to domain d; in the opposite mislabeling the defender pays a cost w[d], i.e.,
a cost specified by loss of all traffic going to domain d. While this POMDP model
captures all relevant elements of the problem, it is not at all tractable. Consider
the input variables to this model, the number of domains D, the number of nodes
N and the number of channels k. The state space grows as O(2D), the action
space is O(2N |τ |K2D) and the observation space is O(2K). This full formulation
is exponential in all the input variables and cannot scale to larger, realistic
network instances (we also show this experimentally in the Evaluation Section).
In order to reduce the combinatorial nature of the observation space, action space
and state space, we introduce a compact representation for the observation and
action space and a factored representation for the state space that results in
splitting the POMDP into multiple POMDPs.

4 POMDP Abstraction

We represent the POMDP compactly by using three transformations: (1) we
use the same threshold for very channel going to the same domain and change
the action space from sensing on nodes to sensing on channels, (2) reduce the
observation space by noting that only the number of alerts for each domain are
required and not which of the channels generated these alerts and (3) factoring
the whole POMDP by domains, then solve a POMDP per domain and combine
the solutions at the end. Next, we describe these transformations in details.
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Abstract Actions. We can reduce the action space by (1) enforcing that the
same threshold is set for all channels going to the same domain and (2) by
reasoning about which channels to sense over instead of which nodes to sense
on. The first change reduces the action space from a |τ |K dependance to |τ |D,
where |τ | is the discretization size of the threshold for the detector. The new set
of threshold actions is then Ac = 〈τ1, . . . τD〉. The second change replaces the set
of actions on nodes An with a set of actions on channels Ak = 〈sk[1] . . . sk[D]〉,
where sk[d] is the number of channels to be sensed out of the |C[d]| channels that
end in domain d. This changes the action space complexity from 2N to |C[d]|D.
Then the action space is given by

Actions A = Ac × Ak × Ad

where 〈τ1, . . . τD〉 ∈ Ac, 〈sk[1] . . . sk[D]〉 ∈ Ak and 〈M1 . . . MD〉 ∈ Ad.

In order to properly compute the reward we need to compute the cost of any
action in Ak. To do this we need to build a lookup table mapping each action
in Ak to an action in An, and hence obtain the cost of actions in Ak. Because
we will always choose the lowest cost way to sense on a number of channels,
the action of sensing a specified number of channels can be mapped to the set
of nodes that minimizes the cost of sensing the specified number of channels.
We can compute this using the following mixed integer linear program (MILP)
mincost(〈sk[i] . . . sk[D]〉).

min
zk,an

∑

n

anwn (1)

zk ≤
∑

n∈ck

an ∀k ∈ {1, . . . , K} (2)

∑

ck∈C[d]

zk ≥ sk[d] ∀d ∈ {1, . . . , D} (3)

zk ∈ {0, 1} an ∈ {0, 1} (4)

The mincost(〈sk[1] . . . sk[D]〉) MILP needs to be solved for every action
〈sk[1] . . . sk[D]〉 ∈ Ak, i.e., we need to fill in a table with O(|C[d]|D)
entries. If we take the example network in Fig. 2, the old action space
is An = {{∅}, {n1}, {n2}, {n1, n2}}, and the new action space is Ak =
{{0, 0}, {1, 0}, {2, 0}, {3, 0}, {0, 1}, {1, 1}, {2, 1}, {3, 1}}. In order to map back
to the representation using nodes, we build the mapping: {0, 0} → ∅, {1, 0} →
{n1}, {2, 0} → {n1}, {3, 0} → {n1}, {0, 1} → {n2}, {1, 1} → {n1, n2}, {2, 1} →
{n1, n2}, {3, 1} → {n1, n2}. However, the problem of converting from number of
channels to nodes (stated as mincost(〈sk[1] . . . sk[D]〉) above) is not easy as the
following theorem shows:

Theorem 1. The problem of converting from number of channels to nodes is
NP hard to approximate to any factor better than ln |N |.
Proof. We perform a strict approximation preserving reduction from the set
cover problem. Consider a set cover problem. We are given a universe of m



48 S.M.M. Carthy et al.

elements E and u subsets of E: U . Form a node nu for each subset u ∈ U and
a domain de for each element e ∈ E. For any particular element e and any node
containing that element, connect it to the domain de. Then, these connections,
say from l nodes, defines l channels each starting from a node and ending in dm.
For any domain d choose sk[d] = 1, i.e., at least one channel needs to be sensed.
It can be easily seen that for any channel ck in this network there is a unique
node it passes through: call it n(k). Choose wn = 1. Then, the optimization
problem to be solved is the following:

min
zk,an

∑

n

an (5)

zk ≤ an(k) ∀k ∈ {1, . . . ,K} (6)
∑

ck∈C[d]

zk ≥ 1 ∀d ∈ {1, . . . , D} (7)

zk ∈ {0, 1} an ∈ {0, 1} (8)

First, we prove that the constraints of this optimization specify a choice of
subsets (nodes) the union of which equals the set E. Since all channels going to
domain d corresponds to a unique element e and at least one channel going to d
is chosen (Eq. 7), this implies at least one node containing e is selected (Eq. 6).
Thus, the set of nodes (hence subsets) contains all elements e.

Given, the feasible space is given by a set of subsets (nodes) the union of
which produces E, the objective clearly produces the minimum number of such
sets. Also, any approximate solution with guarantee α maps to an α approximate
solution of the set cover problem. The theorem follows from the lack of better
than lnn approximatability of set cover. �

Abstract Observations. As we only reason about the state of each domain in
the network, not each individual channel, we can aggregate the observation in
order to reduce the observation space. Thus, instead of recording which channel
generated an alert, we only record total number of alerts per domain. Given there
are |C[d]| channels going to domain d then the observations for each domain lie
in {0 . . . |C[d]|}. This observation space for each domain is then linear in the
number of channels O(|C[d]|). The full joint observation space is exponential in
the number of domains O(|C[d]|D).

The set of observations is then Ω = 〈Ω1, . . . , ΩD〉 where Ωd ∈ {0 . . . |C[d]|}
corresponding to the number of alerts from all |C[d]| channels going to domain
d. Because there is now multiple way for us to get this single observation, the
observation probability function for each domain also needs to be modified.

O(Ωd|Xd, A) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
sk[d]

Ωd

)
α(τd)Ωd(1 − α(τd))

sk[d]
−Ωd if Xd = 1

(
sk[d]

Ωd

)
β(τd)Ωd(1 − β(τd))

sk[d]
−Ωd if Xd = 0

0 else
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VD-POMDP Factored Representation. Looking at both the observation
probability function as well as the belief update, we can consider a factored rep-
resentation of this POMDP, by factoring these by domains. If we then separate
out these factored components and create a new sub-agent for each factor, so
that we now have a total of D POMDP’s, we can greatly reduce the state space,
observation space and action space for each individual sub agent. The model for
each of these individual POMDP is then given as follows.

States S = Xd

Actions A = τd × {0, . . . , |C[d]|} × Md

Transition T (s′, s) =

{
1 iff s′ = s

0 else

Observations Ω = 〈Ω1, . . . , ΩD〉 where Ωd ∈ {0, . . . , |C[d]|}

O(Ωd|Xd, A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(sk[d]

Ωd

)
α(τd)Ωd (1 − α(τd))

sk[d]
−Ωd

if Xd = 1(sk[d]

Ωd

)
β(τd)Ωd (1 − β(τd))

sk[d]
−Ωd

if Xd = 0

0 else

Reward R(S,A) = −
(
Xd(1 − Md)v[d] + (1 − Xd)Mdw[d] + mincost(sk[d]

)
)

The complexity of the state space is reduced to O(1), the action space is
O(|τ ||C[d]|) and the observation space is O(|C[d]|). Table 2 shows the comparative
complexities of the original POMDP model and the VD-POMDP model. As
we use channels as actions for each domain specific POMDP, we still need to
construct the lookup table to map channels as actions to nodes as actions in
order to obtain the cost of each action on channels. Factoring the model in the
way described above also simplifies the construction of this lookup table from
actions on channels to actions on nodes, and hence computing mincost(sk[d]) can
be done in a much simpler way for the VD-POMDPs. We solve a similar (MILP)
as in (2)–(4) but for each VD-POMDP for domain d; thus, we only need to fill
in a table with O(|C|) entries, one for each of the sk[d] actions for each domain
d. The new MILP formulation is given in Eqs. 10–12. Observe that unlike the
MILP (2)–(4) used to build the lookup table for the original POMDP, this MILP
is solved for a fixed domain d.

Table 2. Complexities of full and VD-POMDP models with original and compact
representations.

Full POMDP VD-POMDP

Original Abstract

State O(2D) O(2D) O(1)

Action O(2N |τ |K2D) O(|C[d]|D|τ |D2D) O(2|C[d]||τ |)
Observation O(2K) O(|C[d]|D) O(|C[d]|)
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min
zk,an

∑

n

anwn (9)

zk ≤
∑

n∈Ck

an (10)

∑

ck∈C[d]

zk ≥ sk[d] (11)

zk ∈ {0, 1} an ∈ {0, 1} (12)

While the above optimization is much more simpler than the corresponding
optimization for the original POMDP, it is still a hard problem:

Theorem 2. The problem of coverting the number of channels to nodes for each
VD-POMDP is NP Hard.

Proof. We reduce from the min knapsack problem. The min knapsack problem
is one where the objective is to minimize the value of chosen items subject to
a minimum weight W being achieved, which is a well known hard problem.
Also, wlog, we can assume weights of items and W to be integers. Given a min
knapsack with n items of weights w′

i and value vi and min weight bound W form
an instance of our problem with n nodes (mapped to items) and each node i
having w′

i channels going directly to domain d. It can be easily seen that for any
channel ck in this network there is a unique node it passes through: call it n(k).
Each node i also has traffic wi = vi. Also, sk[d] = W . Then, the optimization
problem being solved is

min
zk,an

∑

n

anvn subject to zk ≤ an(k),
∑

ck∈C[d]

zk ≥ W, zk ∈ {0, 1}, an ∈ {0, 1}

Note that in the constraints, whenever a node is selected an(k) = 1 then making
all wi channels in it one makes the weight constraints less tight. Thus, any values
of an, zk satisfying the constraints specify a set of nodes such that the sum of its
weights is ≥ W . Coupled with the fact that the objective minimizes the values
of selected nodes, the solution to this optimization is a solution for the min
knapsack problem. �

Policy Execution: The solutions to each of these VD-POMDP’s give us an action
〈M∗

d , τ∗
d , s∗

k[d]
〉 corresponding to a labeling of malicious or legitimate for that

particular domain d, the threshold, and the desired number of channels to sense
over. However, at execution time we need to turn on detectors on nodes. Thus,
in order to aggregate these factored actions to determine the joint action to take
at execution, we need to map the output from each POMDP back to a set of
sensing actions on nodes. This can be easily accomplished by solving a single
instance of the larger MILP (2)–(4) with the sk[d] values set to s∗

k[d]
(Fig. 3).

We emphasize here the importance of using the abstract channels as actions
instead of nodes. The possibly alternate approach with nodes as action for each
sub-POMDP and just taking union of the nodes output by each domain specific
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n1 n2 n3

d1 d2 d3

Fig. 3. Sample network with 3 domains, 3 nodes and 5 sources. The dashed lines are
channels to domain d1 the dotted line is the channel to domain d2 and the solid lines
are channels to d3.

POMDP, when the channels are not disjoint, can result in over sensing. Consider
the example below, where there are 4 channels going to domains d1 and d3 and
one to d2 and let us currently be in a belief state where the optimal action for
domain d1 and d3 would be to sense on 2 channels out of the 4 going to each
domain and the optimal action for d2 is to sense on the one channel. Working
in an action space of nodes, the VD-POMDP for d1 would choose to sense on
node n1, the VD-POMDP for d3 would choose to sense on n3 as it has the lowest
amount of traffic for 2 channels and the one for d2 would choose to sense on n2

as it is the only option. Taking the union of these would result in all the sensors
being turned on. However, we can see that choosing only to sense on node n2

satisfies the sensing requirements of all three separate VD-POMDPs.
Next, we identify a condition under which the solution from the larger MILP

is optimal. In the next section, we show empirically that even when this condition
is not met our approach is close to optimal.

Theorem 3. The above described technique of aggregating solutions of the VD-
POMDPs is optimal for the original POMDP iff the solution to the MILP (2)–(4)
for any VD-POMPD policy action results in an equality for the constraint (3).

Proof. First, with the standard representation the global value function given
in Eqs. 13 and 14, cannot generally be fully decomposed by domain due to the
Rn(an) term which couples the actions for each domain through the sending cost.
The decomposition is only possible in special instances of the problem, such as if
network of channels were completely disconnected. The action of selecting nodes
can be partitioned by domains as an[d] . Then, the cost associated with sensing
on the nodes could be written as a sum of domain dependent terms Rn(an) =∑

d Rn[d](an[d]). Also, all actions (threshold, choice of nodes and decision about
each domain) are now partitioned by domain, thus any action a is a combination
of actions per domain ad. Let bd denote the belief state for domain d. The choice
of nodes in this case should just be a union of the nodes chosen by each POMDP
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as seen from the value function as each domain dependent component can be
optimized separately.

V ∗ = max
a

[
R(b, a) + γ

∑
Ω

P (Ω|b, a)V ∗(b, a, Ω)

]
(13)

= max
a

[∑
d

(
Rd(bd, Md)

)
+ Rn(an) + γ

∑
Ω

∏
d

P (Ωd|bd, τd)V ∗(b, a, Ω)

]
(14)

= max
a

[∑
d

(
Rd(bd, Md) + Rn[d] (an[d] )

)
+ γ
∑
Ω

∏
d

P (Ωd|bd, τd)V ∗(b, a, Ω)

]

(15)

= max
a

⎡
⎣∑

d

(
Rd(bd, ad)

)
+ γ

∑
d,Ωd

P (Ωd|bd, ad)V ∗
d (bd, ad, Ωd)

⎤
⎦ =

∑
d

V ∗
d (16)

where V ∗
d = max

ad

⎡
⎣Rd(bd, ad) + γ

∑
Ωd

P (Ωd|bd, ad)V ∗
d (bd, ad, Ωd)

⎤
⎦ (17)

If we instead use the compact representation of the action space, and let the
actions simply be the number of channels to be sensed on and equality is obtained
for the constraint (3) for any action from each domain specific POMDP (i.e.,
each sk[d] can be implemented), then the value function can be decomposed by
domain, because the term Rn(an) is replaced by the

∑
d mincost(sk[d]), which can

be factored by domain and does not couple the VD-POMDP’s. Reconstructing
the joint policy then just amounts to finding the best action from each POMDP
and taking a union of these individual actions. We then just need to map back
to the representation of actions on nodes, by solving the MILP (2)–(4).

V ∗ = max
ad

⎡
⎣∑

d

(
Rd(bd, ad) + mincost(sk[d]

)
)

+ γ
∑
d,Ωd

P (Ωd|bd, ad)V ∗
d (bd, ad, Ωd)

⎤
⎦ =

∑
d

V ∗
d

�

5 VD-POMDP Framework

Here we explain at a high level, the VD-POMDP framework as applied to the
data exfiltration problem, and how it is implemented. With the VD-POMDP,
entire planning model is broken up into two parts as depicted in Fig. 4. The first
is the offline factoring and planning, where the POMDP is factored into several
sub-agents, and each solved individually. Second is the online policy aggregation
and execution, where the policies of each sub-agent are aggregated as each of
them choose actions to perform.

In order to build the VD-POMDP for data exfiltration problem, we first
construct the network graph, based on the topology of the actual computer
network we are modeling as well as the set of domains under consideration,
shown at point (a) in Fig. 4. Then at (b), for each domain in our network,
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we construct a separate POMDP sub-agent. In order to do this we solve the
MILP mincost(skd

) for each agent, in order to abstract away from the network
layer and construct the compact representation of the network. At point (c) each
individual POMDP agent is solved, offline, ignoring the presence of the other
agents to obtaining a policy for each domain.

N
e
tw

o
rk

mincost(sk2 )

mincost(sk1 )

mincost(sk3 )

d2

d1

d3

< τd2 , sk[d2]
, Md2 >

< τd1 , sk[d1]
, Md1 >

< τd3 , sk[d3]
, Md3 >

mincost(< sk1 , sk2 , sk3 >) < Ac, An, Ad >

Ω

︷ ︸︸ ︷

offline

︷ ︸︸ ︷

online

a b c d

e f

Belief UpdatePOMDP

Fig. 4. Flowchart for the data exfiltration VD-POMDP

The policies are then aggregated in an online fashion, shown at point (d) in
Fig. 4 to obtain a joint action (f). At each time step the agents receive obser-
vations from the network and update their beliefs individually. Each agent then
presents the individual action to be performed consisting of a number of chan-
nels to be sensed on, a threshold for sensing and a classification of malicious
or legitimate for their respective domain. The required number of channels for
each agent is then fed into the MILP mincost(〈sk[i] . . . sk[D]〉) to determine the
set of nodes to be sensed on. The agents then again receive observations from
the resulting set of detectors and iterate through this process again.

Policy aggregation is performed online as it would be infeasible to do offline
policy aggregation for all but the smallest policies. If aggregation were to be per-
formed offline, we would need to consider every possible combination of actions
from each policy and then solve the MILP mincost(〈sk[i] . . . sk[D]〉) for each of
these, in order to compute the combinatorially large joint policy. Because the
MILP is fast to solve, it does not result in much overhead when these joint
actions are computed in an online fashion.

It is important to note here that the policy we compute is not an optimal
sequence of actions, but rather a mapping of belief state to actions. This distinc-
tion is important, as it may be the case that, upon policy aggregation, there is
no feasible implementation of the individual action. In such a scenario, an agent
may choose an action to sense on a subset of k channels; however, given the
sensing requirements of the other agents, the agent in question may actually get
to sense on more channels than they had initially wanted. The agent may then
end up in a belief state that they had not originally planned for, but because
we are solving for the entire belief space, we still know how to behave optimally.
Additionally, from Theorem 3, we know that the joint action will only be optimal
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if we can exactly implement each individual action, and no agent get to sense
on more channels than it requests. Our policy aggregation may then result in
a suboptimal joint action being taken, however, we show later in Sect. 6, that
even when the optimality condition does not hold, we can still achieve good
performance.

6 Evaluation

We evaluate our model using three different metrics: runtime, performance, and
robustness. We first look at the runtime scalability of VD-POMDP model, vary-
ing the size of several synthetic network as well as the number of domains and
compare to the standard POMDP model. We then evaluate the performance
of the VD-POMDP, measuring how quickly it can classify a set of domains as
malicious or legitimate, as well as computing the accuracy of correct classifica-
tions. For small network sizes, we compare the performance of the VD-POMDP
to the original model and look at the performance of the VD-POMDP on larger
synthetic networks.

Synthetic Networks. In order to test a variety of network sizes we created
synthetic networks using a tree topology. Leaf nodes in the tree network corre-
spond to source computers. Channels travel upwards from these nodes to the
root of the tree; for each domain we create one such channel on each source
computer. The size of the network is varied by varying the depth and branching
factor of the tree.

6.1 DETER Testbed Simulation

We also evaluated the performance of our model using a real network, by running
simulations on the DETER testbed. The DETER testbed provides capabilities
of simulating a real computer network with virtual machines and simulating
agents that perform tasks on each computer. Every agent is specified in a custom
scripting language, and allows simulating attackers, defender and benign users.
For our simulation we simulated legitimate DNS queries as well as launched
real attacks. We performed a simple attack, by attempting to exfiltrate data
from a file to a chosen malicious domain by embedding data from the file into
the DNS queries. We conducted the attack using the free software Iodine [3]
which allows for the creation of IP tunnels over the DNS protocol in order to
generate these DNS queries. We were provided with 10 virtual machines, from
which we formed a tree topology with 7 of them as host computers and sources
of traffic. We then built and implemented a real time data exfiltration detector
based off of the techniques proposed in [19]. The detector uses off the shelf
compression algorithms like gzip in order to measure the information content
of any channel in the network. We then set a cut off threshold for the level of
allowable information content in any channel. Channels exceeding this threshold
are flagged as malicious. While we chose to use this specific detector to generate
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observations for our model, it is important to note that any other methods for
detecting exfiltration would have been equally viable.

6.2 Runtime

We first look at runtimes needed to solve the original model compared to our
VD-POMDP model with increasing number of domains. Unless otherwise stated,
all test used a threshold discretization of 2. We used an offline POMDP solver
ZMPD [22] to compute policies; however, any solver which computes policies for
the entire belief space may be used. The largest network we were able to solve
for with the original model was one of only 3 nodes. For larger than 2 domains
with discount factors γ = −0.2 and all cases with γ = −0.4 and γ = −0.8 the
original POMDP did not finish solving in 24 h and is shown cut off at the 24 h
mark in Fig. 5a. Consistent with the complexities in Table 2, in Fig. 5a we see
the runtimes on the y-axis increase exponentially with the number of domains
on the x-axis, for the original POMDP. If the VD-POMDP models are solved in
parallel, runtimes do not vary with increasing domain. If the models are solved
sequentially, then we would see only a linear increase in runtime. However in the
case where networks have the channels uniformly distributed among all hosts,
i.e. there exists one channel from every host to every domain, then the models
become identical, and it becomes only necessary to solve one of them.

We show the scalability of computing policies for the VD-POMDP in Fig. 5a.
On the y-axis, in log scale we have the runtime in seconds, and on the x-axis, also
in log scale we have the number of nodes in the network, achieved by varying
both the depth and branching factor of our tree network structure. We can see
that there appears to be a linear scaling with the size of the network. We also
show in Fig. 5d the time it takes to build the network, the lookup table of costs
computed by repeatedly solving (10)–(12) and pomdp files to be fed to the solver.
This time corresponds to the steps (a) and (b) in Fig. 4. On the y-axis we have
again the runtime and on the x-axis the number of nodes in the network.

Figure 5c shows the runtime for computing the policy of a single factored
agent with increasing action space. The runtime is shown on the y-axis in sec-
onds, while the increasing action space is measured by the threshold discretiza-
tion on the x-axis. We first divided the space of possible true positive and true
negative rates into a number of segments equal to the discretization number. For
each discretization level, we then combinatorially formed all the true positive and
true negative pairs possible within that discretization number and averaged over
the runtimes, in order to ensure that we were not only testing easy cases, where
one choice threshold was dominant over another.

6.3 Performance

We evaluate the performance of the model by looking at the reward, the number
of time steps taken to classify all domains and the accuracy of the classifications.
For each test, we averaged the values over 100 simulations. Table 3 compares
the performance of the original POMDP model with the VD-POMDP model.
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Fig. 5. Runtime results

The largest tests we could run using the full POMDP were on a network of
3 nodes with a total of two domains, while solving the model with a discount
factor of γ = 0.2. The VD-POMDP model performs as well in terms of accuracy
and time compared to the full POMDP model. We show a normalized average
reward, computed by dividing the total reward by the number of time steps
taken to classify the domains to better compare the models. Since we stop the
simulation after all the domains have been classified, the total reward is not the
expected infinite horizon reward, so simulations which run for different amounts
of time will have had the chance to accumulate different amounts of reward. The
normalized reward is meant to give a better indication of what the long term
average reward would be, which would be a much fairer comparison. We also
looked at the VD-POMDP solved with a discount factor of γ = 0.8, where we can
clearly see the benefit of longer term planning. Although this VD-POMDP takes
longer to classify both domains, it has a perfect accuracy and lower normalized
reward than the other two models. This shows that the model is placing more
value on potential future information, by preferring to wait and collect more
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alerts before making a final decision. This is clearly the better choice as we see
a much better accuracy. It is clear that it is necessary to be able to plan for
the future to perform well in this kind of domain; it is therefore necessary to be
able to solve for large planning horizons, something that we cannot do using just
the original POMDP model. This demonstrates the merit of the VD-POMDP
framework, as solving this problem with a simple POMDP framework is clearly
infeasible.

Table 3. Comparing performance of full POMDP model to factored model on a small
test network of 3 nodes, with 2 domains. One domain is malicious and the other domain
is legitimate.

Model Timesteps to classify Attack traffic accuracy User traffic accuracy Normalized reward

Full POMDP γ = 0.2 11.814 0.948 0.979 −470.594

VD-POMDP γ = 0.2 11.144 0.944 0.961 −675.100

VD-POMDP γ = 0.8 29.044 1.0 1.0 −386.982

Looking at just the VD-POMDP we test performance on a variety of larger
networks in Table 4. Each of the synthetic networks are tested with 50 domains,
averaged over 30 trials. The DETER network is tested with 100 domains aver-
aged over 30 trials. For the DETER network, we used two thresholds, and deter-
mined the true and false positive rates of our detector by letting it monitor traffic
at each threshold setting and observing the number of alerts obtained for each
channel. We found our simple implementation of the detector had true positive
rates of α(τ1) 
 0.35, α(τ2) 
 0.45 and true negative rates of β(τ1) 
 0.8,
α(τ2) 
 0.7, and these were the parameters used in the model for this experi-
ment as well as all the synthetic ones. We can see that, although the synthetic
simulations all perform extremely well, and have a perfect accuracy, the deter
simulation occasionally misclassifies legitimate traffic. This is due to the uncer-
tainty in the characterization of the detector, as network traffic is variable and
may not always follow a static distribution. Observations for the synthetic exper-
iments were drawn from the distributions that the VD-POMDP had planned for,
while in the DETER experiments, traffic did not always follow the input dis-
tributions. However, even with this uncertainty, the model still performs well
in this realistic network setting. A more sophisticated implementation of this
detector along with a more intensive characterization would even further boost
the performance.

Table 4. Performance of the factored model on larger networks.

Network Timesteps to classify Attack traffic accuracy User traffic accuracy Normalized reward

Synthetic 40 nodes 4.079 1.0 1.0 −13523275.239

Synthetic 85 nodes 3.252 1.0 1.0 −15514333.580

Synthetic 156 nodes 3.235 1.0 1.0 −22204095.194

Synthetic 341 nodes 3.162 1.0 1.0 −21252069.929

DETER 5.3076 1.0 0.995 −6835.588
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Time Action Observations
# Channels τ Md

1 64 1 0 23
2 62 1 0 23
3 3 0 0 0
4 5 0 0 2
5 8 0 0 2
6 18 0 0 4
7 0 0 0 0

Fig. 6. Trace of a run on a network of 85
nodes of a single legitimate domain.

We also show an example of the
diversity of actions chosen by the VD-
POMDP. In Fig. 6 we show a trace
of the actions taken by a single agent
planning for a single domain. We show
the number of channels chosen to
sense on, the choice of threshold, along
with the classification of the domain.
We also show the observations, which
the number of channels that triggered
alerts. The simulation ends when no
more channels are to be sensed on. We
can see the agent varying the number
of channels as well as the threshold of the detector, as they become more and
more sure that they domain is legitimate.

6.4 Robustness

Lastly, we looked at the robustness of our model to errors in the input parame-
ter. As evidenced with the DETER experiment, the model requires known false
positive and true positive rates for the detector. While it may be reasonable to
assume that with enough monitoring, it is possible to get accurate measures of
false positive rates in a network by simply running the detector on known legit-
imate traffic for long periods of time, it is more difficult to characterize the true
positive rates, as attacks can take many forms and exfiltration can occur over
varying rates. In order to test the robustness of our model, we solved for the
policy using one set of rates and then tested the model in simulation against a
variety of actual rates. For our tests, the model was solved with a true negative
rate of 0.8 and true positive rate of 0.55. We then drew alerts from a range
of distributions for the true positive and negative rates as shown in Fig. 7 on
the y-axis and x-axis respectively. The metrics used to measure robustness are
shown as a heat-map for each true positive, true negative pair.

In Fig. 7a performance of the model was tested by looking at the percent of
incorrect legitimate domain classifications i.e. the percent of legitimate domains
flagged as malicious. In all cases except for one, all legitimate domains were
correctly flagged as non-malicious, and in one case legitimate domains were mis-
classified in only 0.4 % of the trials. In Fig. 7b the percent of correct malicious
domain classifications is shown, where in all but two cases, the correct domain
was always identified. Figure 7c shows the number of time steps taken to classify
all the domains, while Fig. 7d shows the average reward (in this case a penalty)
for the simulations. We can see that the model is robust to mischaracterization of
the detectors, where the only dips in performance occur when either the detector
has a low true negative rate and when the error in both the true positive and
negative rates are large.
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Fig. 7. Testing the robustness with respect to error in the planned true positive and
true negative rate.

7 Conclusion and Future Work

We demonstrated the effectiveness of POMDP based planning tool in mak-
ing intelligent decisions to tackle the problem of DNS based data exfiltration.
These decisions were made by aggregating information from multiple noisy detec-
tors and using sequential planning under uncertainty based reasoning. In doing
so, we also proposed a new class of POMDPs called VD-POMDP that uses
domain characteristics to split the POMDP into sub-POMDPs and allows for
abstract actions in each sub-POMDP that can then be easily converted to a
full joint action at execution time. VD-POMDP allows scaling up our approach
to real world sized networks. The approach also detects attacks in near real
time, thereby providing options to minimize the damage from such attacks.
More generally, we believe that our approach applies to other security detec-
tion and response problems such as exfiltration over other protocols like HTTP
and intrusion detection. While this work is an important step in addressing the
problem of APT’s in a realistic and scalable manner, we recognize that having
a non-adaptive adversary is a simplification of the potentially complex interac-
tion between attacker and defender in this environment. Building an appropriate
adversary model, and considering the underlying game in this domain is a key
avenue for future work in this area.
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