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Abstract
As non-volatile memory (NVM) technologies are expected
to replace DRAM in the near future, new challenges have
emerged. For example, NVMs have slow and power-consuming
writes, and limited write endurance. In addition, NVMs have
a data remanence vulnerability, i.e., they retain data for a
long time after being powered off. NVM encryption allevi-
ates the vulnerability, but exacerbates the limited endurance
by increasing the number of writes to memory.

We observe that, in current systems, a large percentage of
main memory writes result from data shredding in operat-
ing systems, a process of zeroing out physical pages before
mapping them to new processes, in order to protect previ-
ous processes’ data. In this paper, we propose Silent Shred-
der, which repurposes initialization vectors used in standard
counter mode encryption to completely eliminate the data
shredding writes. Silent Shredder also speeds up reading
shredded cache lines, and hence reduces power consump-
tion and improves overall performance. To evaluate our de-
sign, we run three PowerGraph applications and 26 multi-
programmed workloads from the SPEC 2006 suite, on a
gem5-based full system simulator. Silent Shredder elimi-
nates an average of 48.6% of the writes in the initialization
and graph construction phases. It speeds up main memory
reads by 3.3 times, and improves the number of instructions
per cycle (IPC) by 6.4% on average. Finally, we discuss sev-
eral use cases, including virtual machines’ data isolation and
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user-level large data initialization, where Silent Shredder can
be used effectively at no extra cost.

Keywords Encryption; Hardware Security; Phase-Change
Memory; Data Protection

1. Introduction
With the arrival of the era of big data and in-memory an-
alytics, there is increasing pressure to deploy large main
memories. The traditional use of DRAM as main memory
technology is increasingly becoming less attractive, for sev-
eral reasons. The need to refresh volatile DRAM cells in-
curs large power consumption, which limits the amount of
DRAM we can deploy in the same package. Second, scal-
ing down DRAM cell size becomes difficult as the charge in
DRAM cell capacitor needs to be kept constant to meet the
retention time requirements [27]. Considering these DRAM
limitations, computer system designers are rightfully consid-
ering emerging Non-Volatile Memories (NVMs) as replace-
ments for DRAM. NVMs are non-volatile and require no
refresh power; some of them have a read latency compara-
ble to DRAM, while at the same time they may scale better
than DRAM [6, 8, 41].

Currently, there are still serious challenges in using
NVMs as the main memory. Writing to NVM cells is of-
ten slow, requires large power consumption, and has lim-
ited write endurance, e.g., 10-100 million writes in Phase
Change Memory [6, 8, 30, 41, 45]. Another serious chal-
lenge is the data remanence vulnerability, where NVMs re-
tain data for NVMs a long time after a system is powered
off whereas DRAM loses data quickly. Obtaining an NVM
chip and scanning it can reveal data in memory. Memory
encryption has been proposed to ward off data remanence
attacks [16, 43]. While effective in dealing with the vul-
nerability, memory encryption worsens the write endurance
problem. A good encryption scheme must have the diffu-
sion property; the change in one bit in original data should



change many bits in the encrypted data [36]. However, as
pointed out by Young et al. [43], techniques to reduce the
number of writes in NVMs, such as Data Comparison Write
(DCW) and Flip-N-Write (FNW), lose effectiveness due to
diffusion because these techniques are inspired by the ob-
servation that few bits will have their values changed after
successive cache line writes.

Therefore, with memory encryption, reducing the number
of writes is of paramount importance. The goal of this paper
is to find opportunities to reduce the number of writes to an
encrypted NVM used as main memory. Specifically, we fo-
cus on the problem of data shredding, which is one of the
most frequent operating system (OS) operations [14]. Data
shredding is the strategy to initialize to zero each physical
memory page before mapping it to a process [13, 32, 35].
The OS performs shredding to avoid inter-process data leak,
where a process accidentally or intentionally reads the old
data of another process. Also, hypervisors perform shred-
ding to avoid inter-virtual machine (VM) data leak in vir-
tualized systems. Our experiments show that data shredding
can contribute to a large portion of the overall number of
main memory writes, significantly costing processor cycles
and memory bandwidth. Furthermore, up to 40% of the page
fault time can be spent in page zeroing [38].
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Figure 1. Example of duplicate data sherdding.

The frequency of shredding will further increase where
there are many running processes or many virtual machines
sharing a system, which is becoming increasingly more com-
mon in servers, due to virtualization and server consolida-
tion. Data shredding can also occur multiple times for a
single memory page. For example, as shown in Figure 1,
hypervisors manage memory allocations across virtual ma-
chines in virtualized systems. As shown in Step 1, a VM
requests host physical memory pages. However, the hyper-
visor needs to zero out the data to prevent inter-VM data
leak [7, 9], as shown in Step 2. Furthermore, when a process
requests memory pages, the Kernel/OS inside the VM zeroes

out physical pages before mapping them to a new process to
prevent inter-process data leak, as shown in Steps 3 and 4,
respectively. The impact of data shredding necessitates that
we rethink how data shredding should be implemented.

Virtual machines and local nodes’ kernels may prefer to
request memory allocations with large granularity, for sev-
eral reasons. The hypervisor or resource manager does not
need to go through a large number of extra page table walks
beyond the page table walks that occur at the virtual ma-
chine or local node level, hence reducing the cost of address
translation misses. Another reason is to reduce the interven-
tion between virtual machines or local nodes and resource
managers, hence a better scalability. Accordingly, for in-
stance, assume a system with hundreds of terabytes of mem-
ory and a large number of nodes, memory allocations can
be in order of gigabytes or terabytes. Zeroing out such large
amount of memory would be very slow. Furthermore, there
is a chance that the virtual machine or the local node never
writes the whole space, but shredding the whole assigned
physical space is still required.

Previous work targeted speeding up zeroing pages in the
context of DRAM main memory [21, 34, 42]. However,
since writes to DRAM are cheap, these studies proposed
speeding up the zeroing operation, but not eliminating it. For
example, Jiang et al. [21] suggest offloading the zeroing to
a DMA engine, while Sehsadri et al. [34] shift the zeroing
to within the DRAM. However, in both studies, the writes to
the main memory still occur, and hence these methods are
not suitable for use in NVM-based main memory.

In this paper, we present a secure NVMM controller, Silent
Shredder, that completely eliminates writes to NVM due to
data shredding. Silent Shredder eliminates shredding-related
writes to NVM-based main memory by exploiting initializa-
tion vectors (IVs) used in symmetric encryption. We prevent
data leakage and eliminate shredding-related writes at the
same time with minimal cost. One key insight for avoiding
shredding-related writes is that to protect data privacy of a
process, it is sufficient for the OS to make a data page unin-
telligible when the page is allocated to another process. By
making the page unintelligible rather than zeroing it, the old
data of a process is protected from being read by another
process. The second insight is that when data in a newly
allocated page is read, for software compatibility, the con-
troller should skip the actual reading from NVM and instead
should supply a zero-filled block to the cache. Silent Shred-
der achieves these goals by repurposing the IVs: it manipu-
lates IVs to render data pages unintelligible and to encode
the shredded state of a page. Note that Silent Shredder works
with all modes of symmetric encryption that use IVs, includ-
ing the counter mode used in recent secure NVM proposals.
By avoiding shredding-related writes to NVM and the sub-
sequent reads from NVM, Silent Shredder improves NVM’s
write endurance, increases read performance, and reduces
power consumption. All these are achieved using low-cost



modifications to a standard counter-mode encrypted mem-
ory system.

To evaluate our design, we use gem5, a detailed full-
system simulator, to run 3 graph analytics applications
from the PowerGraph framework and 26 multi-programmed
workloads from the SPEC 2006 benchmark suite. Silent
Shredder eliminates about half (48.6%, on average) of the
writes in the initialization and graph construction phases.
Furthermore, it speeds up the memory reads by an average
of 3.3 times and improves the instructions per cycle (IPC)
by an average of 6.4%.

The rest of the paper is organized as follows. We briefly
describe NVM technologies, data shredding, and encrypted
NVMs in Section 2. In Section 3, we present a motivational
example. In Section 4, we introduce several design options
for eliminating data shredding and discuss their advantages
and disadvantages. Later, we motivate our choice of Silent
Shredder as the preferred design and then show that our de-
sign can be implemented at zero cost when using secure
NVMM controllers. We introduce our evaluation method-
ology in Section 5 and present evaluation results and a pa-
rameter sensitivity study in Section 6. In Section 7, we dis-
cuss several use cases, security concerns, and remediation
for Silent Shredder. We discuss related work in Section 8
and conclude with a summary in Section 9.

2. Background
In this section, we briefly describe emerging NVM technolo-
gies, memory encryption, and data shredding in OSes.

2.1 Non-Volatile Memories (NVMs)
Phase-Change Memory (PCM), Spin-Transfer Torque (STT-
RAM) and Memristor are among emerging non-volatile
memory technologies, some of which are considered as
candidates for replacing DRAM for use as the main mem-
ory. Their read latencies and densities are either competi-
tive or comparable with DRAM, and they may scale bet-
ter than DRAM. However, NVMs suffer from slow and
power consuming writes, and generally have limited write
endurance, e.g., 10-100 million writes with Phase Change
Memory [30]).

When used as main memory, NVMs may provide persis-
tent memory, where regular store instructions can be used to
make persistent changes to data structures in order to keep
them safe from crashes or failures. Persistent memory en-
ables persistent memory allocations [11, 23, 24, 39], and
may allow future systems to fuse storage and main mem-
ory [1, 4, 26]. When an application or a VM requests and
uses a persistent page, the OS should guarantee that its page
mapping information is kept persistent, so the process or the
VM can remap the page across machine reboots [24, 39].
There has been research on explicit software programming
frameworks for exploiting persistent memory, e.g., ATLAS
[15].

However, NVMM suffers from a serious security vulner-
ability: it retains data long after a system is powered off.
Obtaining physical access to NVMM (through theft, repair,
or improper disposal) allows attackers to read the plaintext
of data [16, 43]. Accordingly, NVMM should be paired with
at least some form of memory encryption.

2.2 Memory Encryption
There are two general approaches for encrypting NVMM.
One approach assumes the processor is not modified, and the
NVMM controller encrypts the main memory content trans-
parently to the processor [16]. To minimize performance
overheads, cold data, i.e, infrequently used data, stays en-
crypted, but hot data is proactively decrypted and stored in
plaintext in memory. Another approach assumes that the pro-
cessor can be modified and the processor chip is the secure
base. Any data sent off chip in the main memory is en-
crypted. There are many example systems using the latter
approach, including some recent studies [31, 40, 43].
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Figure 2. State of the art counter mode encryption. AES
is shown for encryption/decryption but other cryptographic
algorithms are possible.

There are several encryption modes that can be used to
encrypt the main memory. One mode is direct encryption
(also known as electronic code book or ECB mode), where
an encryption algorithm such as AES is used to encrypt each
cache block as it is written back to memory and decrypt the
block when it enters the processor chip again. Direct encryp-
tion reduces system performance by adding decryption la-
tency to the last level cache (LLC) miss latency. Another
mode is counter mode encryption, where the encryption al-
gorithm is applied to an initialization vector (IV) to generate
a one-time pad. This is illustrated in Figure 2. Data is then
encrypted and decrypted via a simple bitwise XOR with the
pad. With counter mode, decryption latency is overlapped
with LLC miss latency, and only the XOR latency is added
to the critical path of LLC miss. In state-of-the-art design,
the IV of a counter mode encryption consists of a unique
ID of a page (similar to a page address, but is unique across
the main memory and swap space in the disk), page offset



(to distinguish blocks in a page), a per-block minor counter
(to distinguish different versions of the data value of a block
over time), and a per-page major counter (to avoid overflow
in counter values).

For the rest of the paper, we assume counter mode
processor-side encryption, similar to earlier papers [31, 40,
43], because counter mode is more secure: Encryption in
ECB mode, without the use of counters or IVs is vulnerable
to several attacks based on the fact that identical blocks of
plaintext will encrypt to identical blocks of ciphertext, wher-
ever they occur in memory; vulnerabilities include dictio-
nary and replay attacks. Memory-side encryption, e.g. with
secure DIMMs, is vulnerable to bus snooping attacks. In
addition, processor-side encryption makes it easier to inter-
face with the OS, use per-user and per-application keys, and
expose key management to users and applications (where
appropriate).

Counters are kept in the main memory, but are also
cached on chip with one major counter of a page co-located
in a block together with all minor counters of a page. For ex-
ample, in [40], a 4KB page has a 64-bit major counter that is
co-located with 64 7-bit minor counters in a 64-byte block.
Any parts of the IV are not secret and only the key is secret.
The security of counter mode depends on the pad not being
reused, hence at every write back, a block’s minor counter is
incremented prior to producing a new IV to generate a new
pad. When a minor counter overflows, the major counter of
the page is incremented and the page is re-encrypted [40].
Finally, counter mode integrity needs to be ensured to avoid
attackers from breaking the encryption. While counters are
not secret, they must be protected by Merkle Tree to detect
any tampering to their values [31].

2.3 Data Shredding
Avoiding data leak between processes requires clearing, e.g.,
zeroing, a memory page of a process before allocating it to
another process. The cost of data shredding is high. For ex-
ample, a recent study showed that up to 40% of the page
fault time is spent in page zeroing [38]. Different operating
systems adopt different zeroing strategies. For example, in
FreeBSD, the free pages are zeroed out early and kept in
a memory pool ready for allocation. Once a process needs
a new page to be allocated, a new virtual page is mapped
to one of the zeroed physical pages [2]. In Linux, the ker-
nel guarantees that a newly allocated virtual page is initially
mapped to a special physical page called the Zero Page. The
Zero Page is shared by all new allocated pages. The actual al-
location of a physical page happens when the process writes
to the page for the first write, using a mechanism referred
to as copy-on-write (COW). During COW, a physical page
(from another process) is zeroed out and the virtual page is
remapped to it [13]. Similar mechanisms are deployed by
hypervisors to avoid data leak between virtual machines [7].

The zeroing step itself can be implemented with different
mechanisms [18]. One mechanism relies on using temporal

store instructions, e.g., movq in the x86 instruction set, which
brings each block into the cache before writing zero to it.
The use of temporal store can cause cache pollution, where
useful blocks are evicted and cause subsequent cache misses.
The impact of cache pollution increases when dealing with
large pages, such as 2MB and 1GB size pages. In addition,
the mechanism works well if all cache blocks of the page
are used shortly after zeroing; however, often this is not the
case. Also, without additional mechanisms, zeroing blocks
of the page in the cache is not secure as it does not persist
the modifications to the NVMM right away. Hence, upon
system failures, the zeroing may be lost, and data leak may
occur.

Another zeroing mechanism is using non-temporal store
instructions, such as movntq in x86. Such store instructions
bypass the entire cache hierarchy and write directly to the
main memory; any blocks that are currently cached are inval-
idated. Non-temporal stores avoid cache pollution, but they
also come with a risk of invalidating soon-to-be accessed or
initialized blocks. Some overheads remain unchanged, e.g,
the number of store instructions used, and latency and power
from using memory bus bandwidth.

There have been proposals to improve zeroing perfor-
mance. Some studies have proposed offloading the zeroing
step to the DRAM controller or the DMA engine, so that the
CPU time is not wasted in zeroing pages and cache pollu-
tion is avoided [18, 21, 34]. Such techniques are effective in
DRAM main memory, but with NVMM, the zeroing still re-
sults in high performance overheads due to high power con-
sumption and latency of writes in NVMs, and reduced write
endurance. Since our paper targets memory controllers for
NVMM, we consider techniques that zero out pages in main
memory and bypass the caches entirely, but with a signifi-
cant reduction in the actual zeroing operations.

3. Motivation
We start with an example to study the impact of kernel

shredding on system performance. Assume a simple code
that allocates and initializes SIZE bytes of memory, as
shown in the code snippet in Figure 3. As explained earlier

// Allocating SIZE bytes
char ⇤ ALLOC= (char ⇤) malloc(SIZE);
// Setting all allocated memory to 0
// Point 0
memset(ALLOC,0,SIZE);
// Point 1
memset(ALLOC,0,SIZE);
// Point 2

Figure 3. A code sample for initializing allocated memory.

in Section 2, the Linux kernel allocates and zeroes out a
physical page right after the first write. Accordingly, the
first store instruction in the first memset causes a page fault,



the page fault handler then allocates a new physical page
and zeroes it out, and finally maps it to the application
process. As the application’s memset resumes after the page
fault, if the region is the size of a page, page zeroing is
redundantly repeated. Overall, the first memset incurs the
following delay: kernel page allocation, kernel zeroing, and
program zeroing. In contrast, the second memset only has
the program zeroing delay. Since program zeroing follows a
similar mechanism as kernel zeroing, the second memset’s
delay is a good proxy of kernel zeroing latency. memset
is more optimized than the kernel zeroing process- it uses
non-temporal stores when the size of the memory to be
initialized is bigger than the LLC, and hence avoids cache
pollution. Hence it takes less time than kernel zeroing and in
our experiments, memset’s time is a conservative proxy for
kernel zeroing time. Figure 4 shows the time spent to execute
the first vs. the second memset.
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The overall execution time is the time taken by the first
memset (which includes page zeroing, page faults, and pro-
gram zeroing), and the height of the blue bars is the time
taken by the second memset (which only incurs program ze-
roing). We observe that on average, roughly 32% of the first
memset time is spent in kernel zeroing. Our observation is
consistent with previous studies that showed that up to 40%
of the page fault time is spent in kernel zeroing [38]. Note
that writing latency for NVMs is multiple times slower than
that of DRAM, and hence the page zeroing is expected to be-
come dominant and to contribute for most of the page fault
time.

Now let us examine real applications. Figure 5 shows
the number of writes to the main memory for several graph
analytics applications from the PowerGraph suite [20]. The
number of writes was collected using performance counters.
A system call was added to collect the number of times the
kernel calls the clear_page function. For all real system
experiments, we use Linux kernel 3.16.2 on a 12-core Intel
Xeon E5-2620 CPU machine with 16GB main memory. The
data sets we use are publicly released data sets from Netflix
and Twitter [10, 44].

For each application, the first bar represents the num-
ber of writes when using temporal kernel zeroing (zero-
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ing in caches). The second bar represents the number of
writes when using non-temporal kernel zeroing (bypass-
ing the cache hierarchy). Finally, the third column shows
the number of writes to the main memory when zeroing
is avoided in the main memory. We obtained the third bar
by counting the number of writes caused by kernel zeroing
in the non-temporal case and deducting it from the overall
number of writes. We observe that in big data applications,
such as graph analytics, a large percentage of the overall
number of writes to the main memory is caused by kernel
zeroing. The main reason behind this is that many data an-
alytics applications exhibit a write-once read-many times
behavior, where the graph is rarely modified after the graph
construction phase.

In summary, we found that kernel zeroing can contribute
very significantly to the execution time and the number of
main memory writes, regardless of whether temporal or non-
temporal writes are used. While such overheads are costly
with DRAM main memory, they are multiple times more
costly with NVMM due to the slow and power consuming
nature of writes, and the reduction in NVMs’ lifetime until
write endurance limit is reached.

4. Silent Shredder Design
In this section, we explore several design alternatives for
data shredding and motivate the design choices in Silent
Shredder.

4.1 Attack Model
Silent Shredder is designed to protect against attacks carried
out by attackers who have physical access to the computers.
The attackers can scan a computer’s bus or main memory,
tamper with main memory content, or play man in the mid-
dle between the computer’s processor and the main mem-
ory. This attack model is the same as the models assumed in
prior memory encryption studies [31, 40, 43]. Such attacks
are possible due to several reasons such as lax physical se-
curity guarding server rooms in cloud computing facilities,
improper disposal of computers at the end of their service,
and malicious administrators or repairmen. Attackers may



insert a bus snooper or a memory scanner to read out data
communicated off the processor chip. They may also insert
devices to overwrite the content of the main memory, or act
as a man in the middle by returning false data requested by
the processor chip. They may conduct known-plaintext at-
tacks by observing the encrypted value of an expected data
item, or employ dictionary-based attacks by guessing origi-
nal values according to encrypted values’ frequency.

We leave out side-channel attacks because they are be-
yond the scope of this paper and there are many side-channel
protection mechanisms in the literature that can be added to
Silent Shredder as needed.

Silent Shredder requires the OS to communicate page
zeroing to hardware. This requires minimal modifications to
the OS’s page fault handler; however, it requires the OS to
be trusted, as an untrusted OS can maliciously avoid page
zeroing in order to cause data leak between processes. If the
OS is not trusted, then processes must run in secure enclaves.
Although beyond the scope of this paper, we believe that
Silent Shredder can be adapted relatively easily to work
with secure enclaves. For example, the hardware can notify
Silent Shredder directly when a page from an enclave is
going to be deallocated. Further discussion about several
security concerns when using counter-mode encryption and
their remediations can be found in Section 7.1.

4.2 Skipping the Zeroing Writes
The main goal of shredding data is to prevent data leakage
between processes or VMs when a page is reused. One key
observation we make is that page zeroing is only one way to
prevent data leakage. Writing any unintelligible or random
content into the page before the page is reused achieves the
same goal, as the process which gets the page will not be
able to read any meaningful data from the page. In traditional
(non-encrypted) memory, however, there is no advantage to
writing a random pattern to a page compared to writing zeros
to the page. In fact, writing zeros to a page is more efficient
as various instruction sets may provide a special instruction
to zero an entire cache block (e.g., dcbz in PowerPC).

However, in encrypted memory, the nature of crypto-
graphic encryption can be exploited to initialize a reused
page with a random pattern for free. For example, consider
a page of data encrypted with the key K1. Before the page
is reused, if we change the key to a different one, K2, then
subsequent decryption of the page will result in unintelli-
gible data. The nature of encryption ensures that the new
decrypted data is not correlated with the initial data, nor is
it any easier to break encryption when attackers read data
decrypted with a different key. Most importantly, the entire
initialization writes to the reused page are completely elim-
inated, resulting in significant performance improvement,
power savings, and write endurance improvement.

The above technique can be achieved by giving every pro-
cess a unique key, instead of the entire system using one

key. However, giving each process a unique encryption key
seriously complicates key management. First, the architec-
ture and the OS need to ensure that no key is reused and all
keys are securely stored. Second, it complicates data shar-
ing among processes: shared pages need to be encrypted/de-
crypted using a common key that is known to all sharing pro-
cesses. Third, from a practical perspective, the memory con-
troller has no easy way to identify the process that owns the
physical address of the memory read/write request; hence it
is unable to decrypt the data without the correct key. Ad-
dressing this requires the process ID or the process-specific
key to be passed along with every memory request.

These challenges make the deployment of such a de-
sign costly. Thus, in Silent Shredder, we assume that pro-
cesses share a single cryptographic key. In order to pro-
vide a way to initialize a reused page with a random pattern
without using process-specific keys, we exploit the feature
of counter-mode encryption where the initialization vector
(IV) is what is encrypted to generate a pad. Essentially, if
a block is encrypted with an IV, IV1, but decrypted with a
different IV, IV2, then even when the two IVs differ by just
one bit, the decrypted data is unintelligible. This is because
Data 6= DK(IV2) �

�
EK(IV1) � Data

�
where EK and

DK are encryption and decryption using the key K. There-
fore, to initialize a reused page with unintelligible random
data, it is sufficient to modify the page’s IVs. Note that this
is true of any encryption mode that uses IVs, though we fo-
cus on counter mode in this paper.

The next logical question is which parts of the IV should
be modified. The page ID and the page offset components in
an IV should not be modified as they ensure spatial unique-
ness of the IV of a block. This leaves us with the per-page
major counter and the per-block minor counter. We now dis-
cuss several possible approaches with different trade offs.
One option is to increment all the minor counters in a page.
This changes the IVs of all blocks in a page and avoids ac-
tual page zeroing. However, this option has drawbacks. One
drawback is that since minor counters are typically small,
e.g., 7 bits are recommended [40], incrementing minor coun-
ters induces a high probability of minor counter overflow,
which causes expensive page re-encryption. Essentially, a
block in a page can only be written back from the LLC to
the NVMM 27 = 128 times before the page needs to be re-
encrypted. Page re-encryption involves reading all blocks of
a page from memory into the cache, incrementing the page’s
major counter, resetting all minor counters of the page, and
writing back all blocks of the page from the cache to the
NVMM. Page re-encryption is an expensive operation in
DRAM main memory and is significantly more expensive
in NVMM. Hence it should be avoided whenever possible.

To avoid increasing the frequency of page re-encryption,
we can pursue a second option, where we increment the
major counter and leave all minor counters unchanged. Since
the major counter of a page is used to encrypt or decrypt
all blocks in the page, incrementing the major counter is



sufficient to initialize a reused page to a random pattern.
Accordingly, we do not increase the frequency of page re-
encryption since minor counters are unchanged.

A major drawback with both of these techniques is that
they assume that the OS or applications are not implemented
with the expectation that a newly-allocated page will have
zero values. However, our observation is that this assump-
tion is not valid in modern systems. For example, in Linux,
we find that the libc system library’s runtime load (rtld)
code contains an error-checking assertion that verifies that
pointer variables in a newly-allocated page have the value of
zero (NULL). Hence the two techniques give rise to software
compatibility challenges.

However, we can pursue another approach when such as-
sertion removal is not possible or not desirable. In this sit-
uation, we would still like to avoid zeroing writes but al-
low Silent Shredder to return a zero value when reading any
cache block from a newly allocated page. This requires a
third option as follows. When a reused page is initialized,
the major counter of the page is incremented, and simulta-
neously all the minor counters are reset to zero. We reserve
the value zero in a block’s minor counter to indicate that
when the block is read, zeros are returned to the processor
instead of a random pattern. The zero minor counter is not
used during regular page re-encryption; for example, when a
minor counter overflows, the minor counter will be reset to 1
instead of zero. Upon an LLC miss, the minor counter value
for the block is checked. If it is zero, then the cache block is
not fetched from memory. Instead, a zero-filled block is al-
located in the cache, and returned to the ld or st instruction
that accesses the block. This approach has the side benefit
of reducing page re-encryption frequency as it lengthens the
time until page re-encryption. For the rest of the paper, we
use the third option to accomplish page shredding, where the
major counter is incremented and minor counters are reset.

Note that without the Silent Shredder mechanism, shred-
ding a memory page in conventional NVMM will cause ev-
ery minor counter on a page to be incremented, in addition
to writing zeros to the main memory. Thus, Silent Shredder
does not increase the number of writes to counters, but it
completely avoids page zeroing writes.

4.3 Silent Shredder’s Design
We now discuss Silent Shredder’s overall design. Figure 6
illustrates the high-level mechanism. First, when the OS
wants to shred a page, p, the OS uses a mechanism to give a
hint to the hardware, e.g., by writing p’s physical address to
a memory-mapped register in the Memory Controller (MC).
This is shown in the figure as Step 1. The MC then sends an
invalidation request to the cache and coherence controller
of remote caches and also the local cache (Step 2). The
coherence controller sends out invalidation requests to any
blocks in the page that may be shared in the caches of other
cores. In addition, the block containing p’s counters is also

invalidated from other cores’ counter caches. This step is
necessary for keeping the caches coherent, even though the
blocks will not be actually written. When a remote core has
a cache miss, it will be forced to reload updated counters for
the page and the missing block in the page.

After the invalidation, the counters can be changed (Step
3) by incrementing the major counter of the page p and
resetting all the minor counters to zero. Finally, the counter
cache controller acknowledges (Step 4) the completion of
updating counters, and the MC signals the completion to the
processor. At this time, the zeroing is completed without any
blocks in the page ever written to the NVMM.

Note that steps 2, 3, 4 and 5 are correctness requirements
for any kind of bulk zeroing that bypasses the cache hier-
archy, e.g., non-temporal zeroing and DMA engine support.
Most modern integrated memory controllers have the abil-
ity to invalidate and flush cache lines; DMA region writes
should invalidate any stale data in the cache hierarchy [3,
34]. Furthermore, a simple serializing event, e.g., sfence,
can be implemented to ensure that all invalidations have been
posted and that the counter values have been updated. For ex-
ample, in Linux, non-temporal zeroing stores are followed
by sfence to guarantee that all writes have been propa-
gated to main memory. A similar approach can be adopted in
Silent Shredder, e.g., following shredding the command with
sfence or pcommit, where the memory controller guaran-
tees that serializing events such as sfence or pcommit will
not be marked completed until all invalidations are posted
and all counters are updated.
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Figure 6. Silent Shredder’s shredding mechanism.

Figure 7 shows how a LLC miss is serviced. Suppose the
LLC misses on a block, x. The block address of the miss is
passed to the counter cache (Step 1), resulting in the minor
counter being read out. The minor counter for the block x

is then compared to zero. If the minor counter value is not
zero, then a request to fetch the block x is passed on to the
memory controller (Step 3a), which then obtains x from the
NVMM, decrypts it, and returns it to the LLC (Step 4). On
the other hand, if the value of the minor counter is zero, then
a zero-filled block is returned to the LLC.
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Overall, Silent Shredder’s mechanism achieves the fol-
lowing savings compared to traditional page zeroing mech-
anisms:

1. During page shredding, none of the cache blocks of the
page are written.

2. When any of the 64 blocks in a shredded page is read for
the first time, the NVMM is not accessed, and instead a
zero-filled block is installed in the cache.

Both of these savings improve performance, both dur-
ing and after shredding. Furthermore, the first item re-
duces power consumption and improves write endurance
of NVMM due to skipping writes.
Silent Shredder’s Extensibility: Silent Shredder can be

implemented with any encryption mode that uses IVs: CBC,
PCBC, CFB, OFB, and CTR. Such encryption modes have
the well-known property that encrypted data cannot be de-
crypted without both the encryption key and the IV that were
used to encrypt it. In our scheme, Silent Shredder zeros out
the minor counter and increments the major counter in the
IV, thereby changing the IV originally used for encryption,
making the encrypted data totally irrecoverable.
Counter Cache Persistency: Similar to any scheme that

relies on IVs, Silent Shredder needs to maintain the counter
cache’s persistency by using either a battery-backed write-
back counter cache, or a write-through counter cache. For
the rest of the paper, we assume a battery-backed write-
back counter cache. However, even in case of write-through
counter cache, the overhead for counter cache is minimal per
page zeroing (64B block per 4096B page write).
Data Recovery: In our case, recovering data in case of dis-

asters is the same as with secure DIMMs. For security rea-
sons, encryption keys need to be stored outside the DIMM
or stored securely in the DIMM, e.g. encrypted with a mas-
ter recovery key. Similar mechanisms to recover keys ap-
ply to both cases. In addition, the IVs must be backed up to
NVMM. Once the keys and the IVs are obtained, the data

can be recovered. In addition, redundancy and key sharing
can be used for recovery.

5. Evaluation Methodology
We use a modified version of Linux kernel 3.4.91 in our ex-
periments. Specifically, we replace the clear_page func-
tion used to clear new physical pages with our shredding
mechanism. We use a memory-mapped I/O register for writ-
ing the physical address of the page to be shredded. We use
the default page size of 4KB. Shredding any page larger than
4KB, such as 2MB and 1GB, can be done by sending a shred
command for each 4KB of the large page. In Linux, the func-
tion for clearing large pages, clear_huge_page, already
calls the clear_page function for each 4KB. Therefore, no
more modifications are needed. We run our modified Linux
kernel on gem5, a full system cycle-accurate simulator [12].
We extended gem5’s memory controller to include a counter
cache and a memory-mapped I/O register. We run 26 SPEC
CPU2006 benchmarks with the reference input [5]. We also
run 3 benchmarks from PowerGraph benchmark suite: page
rank, simple coloring and kcore [20]. All benchmarks were
compiled with default settings and optimizations.

Our goal is to study the potential benefits for Silent Shred-
der under environments with high level of data shredding as
a proof of concept. Data shredding is a performance bot-
tleneck during graph construction and initialization phases.
Hence we checkpoint the PowerGraph benchmarks at the
beginning of the graph construction phase, and the SPEC
benchmarks at the beginning of the initialization phase. In
the baseline configuration without Silent Shredder, we as-
sume that when receiving a shred command, shredded cache
blocks are invalidated and written back (if dirty) to the main
memory. In other words, the baseline shredding uses non-
temporal stores. Such an assumption guarantees that similar
number of instructions are executed when comparing Silent
Shredder with the baseline; similar kernel binary and check-
points are used. For fair comparison, we assume that for both
the baseline and Silent Shredder, invalidation of all cache
blocks is sent right after receiving the shredding command.

We warm up the system caches for 1 billion cache ac-
cesses and then run the applications until at least one core
has executed 500 million instructions (a total of approxi-
mately 4 billion instructions for an 8-core system). For SPEC
benchmarks, we run an instance of the benchmark on each
core.

The system configuration used in our simulations is
shown in Table 1. Similar to the expected trend of mod-
ern cache hierarchies, our system has a 4-level cache hier-
archy [37]. L4 and L3 caches are shared among all cores,
while L1 and L2 caches are private for each core. We also
assume a battery-backed writeback counter cache.

Each valid cache block in the counter cache maps to
a single physical page in the main memory. Each block
contains 7-bit minor counters, one for each cache block in



Table 1. Configurations of the baseline system.
Processor

CPU 8 cores x86-64 processor, 2GHz clock
L1 Cache 2 cycles, 64KB size, 8-way, LRU, 64B block size
L2 Cache 8 cycles, 512KB size, 8-way, LRU, 64B block size
L3 Cache 25 cycles, 8MB size, 8-way, LRU, 64B block size
L4 Cache 35 cycles, 64MB size, 8-way, LRU, 64B block size
Coherency Protocol MESI

Main Memory
Capacity 16 GB
# Channels 2 channels
Channel bandwidth 12.8 GB/s
Read Latency 75 ns
Write Latency 150 ns
Counter Cache 10 cycles, 4MB size, 8-way, 64B block size

Operating System
OS Gentoo
Kernel Version 3.4.91

that page, and a 64-bit major counter for that page. In Section
6.4, we discuss the reason behind our choice of the capacity
of the counter cache to be 4MB. The latency of the counter
cache was obtained using the CACTI 6.0 tool [25].

6. Evaluation
In this section, we evaluate the potential benefits that come
from our design. We start by showing the reduction of the
number of main memory writes as a result of using Silent
Shredder. Later, we show how our design also reduces read
traffic and improves performance as additional benefits.

6.1 Write Reduction
The main goal of Silent Shredder is to reduce the number of
writes occurring as a result of the kernel zeroing process for
shredding previous data. We find that an average of 48.6%
of the main memory writes in the initialization phase could
be eliminated. Figure 8 shows the percentage of writes to the
main memory that we could save by using Silent Shredder.
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Figure 8. Savings on writes to the main memory.

From Figure 8, we observe that kernel zeroing contributes
to large percentage of main memory writes for some appli-
cations. A few applications, e.g., H264, DealII and Hmmer,
have a very small ratios of main memory writes to instruc-
tions. Accordingly, we find that for such applications the ma-
jority of main memory writes result from the kernel zeroing

operation. Note that since we simulate the full system, the
kernel zeroing can be a result of the application initializa-
tion code itself, loading system libraries, writing metadata
or any other system activities. Since our work targets shred-
ding from the kernel perspective, we count all kernel shred-
ding writes, regardless of the semantics of the program.

Eliminating a significant number of writes is very impor-
tant; it reduces the memory traffic, increases performance by
eliminating slow and power consuming NVMM writes, and
increases the lifetime of the NVMM. Our evaluation focuses
on the start up or graph initialization phase which is impor-
tant because the graphs get rarely modified after initializa-
tion, hence significant percentage of the main memory writes
occur at this phase. The startup phase is not the only scenario
where Silent Shredder is effective. In a system that is highly
loaded, data shredding will occur frequently because the
high load from multiple workloads are placing a high pres-
sure on the physical memory. For example, most data center
servers today are not very good in terms of energy propor-
tionality (idle power is approximately 50% of peak power),
and therefore peak energy efficiency is achieved when the
data centers are highly loaded resulting in very high proces-
sor utilization rates [19]. A highly loaded system will suffer
from a high rate of page faults, and page fault latency is crit-
ical in this situation.

6.2 Read Traffic Reduction
Another important advantage of using Silent Shredder is
the ability to recognize shredded cache blocks from their
minor counter values. Once a read to a shredded block is
detected, a zero-filled block will be returned to the cache
hierarchy without the need to read the invalid data from the
main memory. We find a surprisingly large percentage of the
initialization read traffic can be eliminated.
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Figure 9. Percentage of the saved main memory read traffic.

As shown in Figure 9, an average of 50.3% of the read
traffic during the initialization phase is due to reading shred-
ded pages. Reducing the read traffic is crucial for systems
that run memory-intensive benchmarks with limited memory
bus bandwidth. Identifying that a block is shredded happens
quickly: any shredded block read request can be completed



once its minor counter value is read. Figure 10 shows the
speed up ratio of the average memory read latency for each
benchmark. On average, Silent Shredder achieves an average
memory read speed up ratio of 3.3⇥ across the benchmarks.
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Figure 10. The speed up of the main memory reads.

6.3 Overall Performance Improvement
As mentioned earlier, in addition to eliminating shredding
writes, Silent Shredder also speeds up reading shredded
cache lines. These two improvements together improve the
IPC. Figure 11 shows the relative IPC when using Silent
Shredder (higher is better), normalized to the baseline.
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Figure 11. Overall IPC improvement.

We observe an average IPC improvement of 6.4% among
all benchmarks, with a maximum of 32.1% for Bwaves.
The overall IPC improvement depends on the fraction of
instructions that access either main memory or shredded
cache blocks.

6.4 Counter Cache Size
The IV cache should be fast enough so that encryption,
specifically OTP generation, starts as soon as possible. Ac-
cordingly, the IV cache needs to be as small as possible while
achieving a high hit rate.

From Figure 12, we observe that increasing the cache size
beyond 4MB has little impact on reducing the cache miss
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Figure 12. The impact of cache size on miss rate.

rate. However, increasing the cache size brings significant
reduction in the cache miss rate until reaching a capacity
of 4MB. Accordingly, we believe that a size of 4MB is the
smallest cache size that achieves a reasonable cache miss
rate.

7. Discussion
In this section, we start by discussing several security con-
cerns when using Silent Shredder and counter-mode encryp-
tion in general, and describe possible remediations. We then
discuss different use cases and applications that can benefit
from Silent Shredder at no extra cost.

7.1 Security Concerns
Several security concerns can arise when using counter-
mode encryption in general. Other concerns arise when re-
lying on hardware to achieve operating system privileged
tasks. In this section, we discuss the concerns and their re-
mediations.

•
Tampering with Memory and Encryption Counter Val-

ues: Since data is already encrypted, tampering with the
memory values can cause unpredictable behavior. How-
ever, tampering with or replaying the counter values can
be a security risk. While out of the scope of this paper, to
avoid such risk, techniques such as Bonsai Merkle Trees
can be used for authenticating the counter values with
low overhead (about 2%) [31, 40]. The only information
that could be leaked to an adversary is whether a page is
shredded or not; a minor counter of 0 will indicate shred-
ding, however, such information is useless. If we want to
hide such information, the only modification needed is to
encrypt the IV counters when writing to the main mem-
ory.

•
Losing Counter Cache Values in Case of Power Loss:

In counter-mode encryption, the counter cache must be
backed up to NVMM whenever there is a crash or power



loss. Hence the counter cache must be battery-backed and
guaranteed to be persistent. In addition, the kernel should
have a mechanism to verify the integrity of the stored
counter values. If the integrity has been violated, then the
kernel should report an error and stop execution of the
system. Further error handling mechanisms are needed
to recover from this error, which are beyond the scope of
this paper.
Another way for achieving persistence of the counter
cache would be a write-through implementation, i.e., any
update to the counter cache is also updated in NVMM.
In the latter case, non-temporal stores or DMA en-
gine zeroing write zeros to NVMM in addition to the
counter cache block. However, in Silent Shredder only
the counter cache block is written to NVMM.

•
Using the Shred Command from User Space: As ex-

plained earlier, the Shred command hints the memory
controller with a physical page address to shred. Allow-
ing user-space applications to issue shred commands can
be a security risk. Accordingly, we implement the shred
command so that it can be executed only by the ker-
nel (kernel-mode) and only when the kernel allocates a
new physical page to a process. Any attempt to write the
memory-mapped I/O register of the memory controller
from a user-space process will cause an exception.

7.2 Other Use Cases for Silent Shredder
While our main goal in this paper is data shredding, Silent
Shredder can be used in other areas.

•
Virtual Machine Isolation in Virtualized Environ-

ments: In VMs, zeroing out pages is used heavily to
shred any physical page before allocating to a VM [7].
This zeroing happens in addition to the kernel shredding
occurring inside the VM to protect applications’ data.
VMs typically request large pools of pages and prefer
large pages due to the reduced translation overhead; large
pages skip one or more levels of translation and hence
speed up the page table walk process [29]. Furthermore,
large allocations can reduce the number of hypervisor
interruptions. Silent Shredder can speed up the VM re-
quests by completely avoiding zeroing out pages. In case
of highly-shared systems, the hypervisor continuously
reclaims physical memory pages from VMs in a process
called memory ballooning, in order to be able to satisfy
requests from VMs with higher memory demand [7]. Ac-
cordingly, data shredding will be very frequent and hence
Silent Shredder can be of substantial use.

•
Initializing Large Blocks of Memory: Some applica-

tions tend to zero out large amount of allocated memory,
e.g., a sparse matrix, as part of the initialization phase.
Such initialization can benefit from the hardware support
provided by Silent Shredder. Applications would invoke

a system call to provide the kernel with the starting vir-
tual address and the number of pages to be zeroed out.
The system call would be translated by the kernel shred
command with the corresponding physical address.

•
Zero Initialization in Managed Programming Lan-

guages: In managed languages, such as Java and C#, the
language specifications require initializing new objects
with zeros. Similarly, unmanaged native languages, such
as C++, have started using zero initialization to improve
memory safety [28]. Silent Shredding can be used to zero
initialize allocated memory pages with low overhead. It
only requires a system call to the kernel, providing it with
the virtual address of the page(s) desired for zero initial-
ization. The kernel will simply submit a shred command
with the physical address of each page to be zero initial-
ized.

8. Related Work
In this section, we discuss prior work related to our work.
Since our work is interdisciplinary and has intersections with
different research problems, we summarize previous work
by the problems they addressed.

Data Shredding: Data shredding is the process of eras-
ing data previously written by a process to prevent inter-
process data leak. Chow et al. [18] discuss the importance of
shredding data during page deallocation and investigate both
temporal and non-temporal ways to zero out pages for shred-
ding purposes. Currently, modern operating systems deploy
shredding by zeroing out pages [2, 13, 32, 35]. Our work
achieves the shredding process at zero-cost by eliminating
the need to write to the main memory.

Improving Initialization Performance: Jiang et al. [21]
suggest offloading the zeroing process to a dedicated DMA
engine close to the memory controller. Their design reduces
both cache pollution and wasted processor time. Seshadri
et al. [34] observe that significant memory bus bandwidth
could be wasted by initialization. Accordingly, they suggest
the zeroing operation to occur within DRAM by dedicating
a zero row inside each DRAM subarray. Their design, Row-
Clone, efficiently reduces the fraction of bus bandwidth used
for initialization. However, in both the previously mentioned
work, writes to the memory cells still occur. Lewis et al. [22]
propose reducing the memory access required to fetch unini-
tialized blocks on a store miss by using a specialized cache
to keep track of uninitialized regions of memory. While their
work and Silent Shredder have similar advantages, our de-
sign’s main goal is to efficiently protect applications’ data.
Speeding up applications and reducing memory traffic are
additional advantages of the way we shred data. Yang et al.
[42] study the performance implications when using tempo-
ral versus non-temporal stores for zeroing data. Sartor et al.
[33] propose new ISA instructions to speed up zeroing in
managed languages. Their solution, however, requires that
the kernel zeros out processes’ new physical pages in main



Table 2. Comparison between Silent Shredder and other initialization techniques.
Mechanism Features

No Cache Pollution Low Processor Time Fast to Read/Write No Memory Writes Persistent No Memory Bus Writes
Non-temporal stores 3 7 7 7 3 7
Temporal stores 7 7 3 7(indirectly) 7 7(indirectly)
DMA bulk zeroing engine 3 3 7 7 3 7
RowClone (DRAM-specific) 3 3 7 7 3 3
Silent Shredder 3 3 3 3 3 3

memory; hence Silent Shredder can be of great importance
when using such a scheme. Table 2 presents a brief summary
of the features of the most related initialization techniques.
Note that for both temporal and non-temporal stores, the pro-
cessor needs to execute a large for loop of movq/movntq in-
structions to zero out the whole page. In the case of temporal
stores, it can also pollute caches and indirectly increase the
main memory writes, as shown in Section 3. Furthermore,
Silent Shredder enables fast read/write operations for the ini-
tialized blocks; shredded lines can be quickly recognized
from their IV values. Silent Shredder also achieves persis-
tent shredding, because the IV values must be backed up in
case of power failure, otherwise, recovering the data will be
impossible.

Secure Non-Volatile Memory Controllers: Chhabra
and Solihin [16] propose encrypting cache lines when writ-
ing to the main memory. Their design aims to efficiently
avoid revealing data when NVMM chips get stolen. How-
ever, their implementation does not protect from bus-snoop,
dictionary-based and replay attacks. Later, Young et al. [43]
propose a design that uses counter-mode based encryption
that eliminates bus-snoop attacks, replay attacks, dictionary-
based attacks, and physical NVM access attacks. Their de-
sign, DEUCE, uses AES counter mode for encrypting cache
lines before writing back to the main memory. Our secure
NVMM controller is based on a design similar to the one
in DEUCE. Accordingly, it prevents all the previously men-
tioned attacks.

Write-aware Non-Volatile Memory Controllers: Writes
to NVM-based main memory are expensive in terms of la-
tency, energy requirements, and lifetime reduction. Accord-
ingly, many previous work have targeted reducing the ac-
tual number of writes to NVM-based main memory [30, 45].
Qureshi et al. [30] propose to dynamically change the bound
of the main memory using start and gap registers to uni-
formly distribute writes across memory cells. Later, Zhou
et al. [45] suggest using differential writes, i.e., first read the
previous data, compare it with the new data, and then only
write the cells whose values have changed. Cho and Lee
[17] propose Flip-N-Write technique, their technique sug-
gests that memory words can be written in a flipped manner
to reduce the number of bits having their value changed and
hence reducing the number of actual writes. In the context
of secure NVMM controllers, Young et al. [43] observe that
techniques such as Flip-N-Write and differential writes are
inefficient in presence of encryption. They propose to reduce
the number of writes by avoiding re-encrypting the unmod-

ified partitions of a cache line. Our work is orthogonal and
can be easily integrated with their design, DEUCE. DEUCE
targets reducing the need for changing cells’ values when a
cache line write is certain to occur. However, Silent Shredder
eliminates the cache line writes completely when shredding
new pages.

9. Conclusion
NVM technologies are serious contenders for replacing
DRAM as main memory in the near future. However, they
face two key challenges for widespread adoption: limited
write endurance and data remanence vulnerability. NVM
encryption alleviates the data remanence vulnerability, but
exacerbates the endurance challenge by increasing the num-
ber of main memory writes. In this paper, we propose an
approach to reduce the number of writes to encrypted NVM
by completely eliminating the writes occurring due to OS
data shredding. Our approach, Silent Shredder, manipulates
counter mode encryption IV values to render memory pages
unintelligible and hence obviates the writing of zeros to
memory pages. For software compatibility, we encode IV
values in a manner so that Silent Shredder quickly identi-
fies shredded blocks from their IV values and then returns a
zero block instead of returning unintelligible data stored in
shredded pages. As a byproduct, this process also speeds up
reading shredded cache lines. Hence Silent Shredder reduces
the number of writes and speeds up reading in encrypted
NVM, and hence reduces power consumption and improves
overall system performance. We believe that encryption will
be commonly used in NVMM for data protection; hence
our Silent Shredder approach can contribute significantly to
NVMM adoption by increasing NVMM lifetime and im-
proving overall system performance.
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