
Fast Submatch Extraction using OBDDs∗

Liu Yang
Rutgers University

lyangru@cs.rutgers.edu

Pratyusa Manadhata
HP Laboratories

manadhata@hp.com

William Horne
HP Laboratories

william.horne@hp.com

Prasad Rao
HP Laboratories

prasad.rao@hp.com

Vinod Ganapathy
Rutgers University

vinodg@cs.rutgers.edu

ABSTRACT
Network-based intrusion detection systems (NIDS) com-
monly use pattern languages to identify packets of inter-
est. Similarly, security information and event management
(SIEM) systems rely on pattern languages for real-time anal-
ysis of security alerts and event logs. Both NIDS and SIEM
systems use pattern languages extended from regular expres-
sions. One such extension, the submatch construct, allows
the extraction of substrings from a string matching a pat-
tern. Existing solutions for submatch extraction are based
on non-deterministic finite automata (NFAs) or recursive
backtracking. NFA-based algorithms are time-inefficient.
Recursive backtracking algorithms perform poorly on patho-
logical inputs generated by algorithmic complexity attacks.
We propose a new approach for submatch extraction that
uses ordered binary decision diagrams (OBDDs) to repre-
sent and operate pattern matching. Our evaluation using
patterns from the Snort HTTP rule set and a commercial
SIEM system shows that our approach achieves its ideal per-
formance when patterns are combined. In the best case, our
approach is faster than RE2 and PCRE by one to two orders
of magnitude.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Network
Operations

General Terms
Algorithms

Keywords
Regular expression, pattern matching, submatch, tagged-
NFA, Ordered Binary Decision Diagram (OBDD)

∗The first author completed parts of this work during an
internship at HP Labs, Princeton, NJ.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’12, October 29–30, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1685-9/12/10 ...$15.00.

1. INTRODUCTION
Regular expression-like pattern languages are widely used

as building blocks of network security products. For exam-
ple, network intrusion detection systems (NIDS) use thou-
sands of patterns to describe malicious traffic. Security in-
formation and event management (SIEM) systems also use
patterns to process event logs generated by hardware devices
and software systems.

Pattern languages commonly used by NIDS are regular
expressions extended with other features. One of the im-
portant features is the capturing group. A capturing group
is a syntax used in modern regular expression implemen-
tations to specify a subexpression of a regular expression.
Given a string that matches the regular expression, sub-
match extraction is the process of extracting the substrings
corresponding to those subexpressions. In Snort 2012 rule
set, more than 10% of pcre fields of the HTTP rules contain
capturing groups. When a pattern containing a capturing
group matches an input string, the submatch construct can
identify parts of the input that are of interest to security
administrators for analysis. For a regular expression like
username=(.*),hostname=(.*) with an input string user-
name=Bob,hostname=Foo, submatch construct can extract
the two substrings Bob and Foo specified by the two cap-
turing groups (the subexpressions wrapped by the two pairs
of parentheses).

Likewise, SIEM systems, which perform real-time analysis
of event logs and security alerts in enterprise networks, also
make extensive use of submatch extraction. SIEM systems
often collect data from a variety of hardware and software
sensors, and must therefore normalize this data into a com-
mon format by extracting common fields from various data
sources. SIEM systems use submatch extraction during data
normalization and alert reporting. In a typical SIEM sys-
tem, more than 90% of regular expressions used for data
normalization contain capturing groups.

In both SIEM systems and NIDS, scalability of pattern
matching and submatch extraction is key. NIDS are often
deployed over high-speed network links, which require al-
gorithms for pattern matching and submatch extraction be
efficient enough to provide high throughput intrusion detec-
tion on large volume of network traffic. Similarly, a typical
SIEM system collects logs from hundred of devices and ap-
plications, and must process terabytes of logs every day in
enterprise networks.

There is plenty of prior work on making pattern match-
ing for regular expressions time-efficient [1, 26, 6, 7, 15, 3,
13, 12, 18] and space-efficient [28, 2, 1, 23, 20, 21]. How-
ever, most of these works only considered regular expres-
sions containing no capturing groups, i.e., they did not sup-

port submatch extraction. Existing solutions for submatch
extraction are based on non-deterministic finite automata
(NFAs) [14, 10] or recursive backtracking [16]. While NFAs
are space-efficient and can extract submatches with a com-
pact memory footprint, they are not time-efficient because
they maintain a frontier, i.e., a set of states in which a NFA
can be at any instant, that can contain O(n) states where
n is the NFA’s number of states. This leads to an O(n) op-
eration time for the NFA for each input symbol. Google’s
RE2 package uses a combination of DFAs and NFAs to im-
prove the time efficiency of submatch extraction [10]. RE2
constructs DFAs on demand (determination on the fly) and
uses DFAs to locate a pattern’s overall match location in an
input string and then uses a NFA-based method to extract
submatches. The time-efficiency of DFAs, however, often
comes with a cost of state blow-up. RE2 can be very slow
when the DFA construction fills up the limited state cache;
it has to empty the state cache and restart the DFA con-
struction process. Moreover, the actual submatch extrac-
tion of RE2 is performed using a NFA-based method, which
is space-efficient, but not time-efficient. Tools such as Perl,
PCRE, and Python use recursive backtracking for regular
expression matching. The execution time of backtracking,
however, can be exponential for certain types of regular ex-
pressions [9]; NIDS which employ backtracking suffer from
algorithmic complexity attacks [19].

We present a novel approach to perform submatch ex-
traction for regular expression-like pattern languages. Our
approach is an extension of the NFA-OBDD work by Yang et
al [26]. While both works employ the ordered binary decision
diagram (OBDD) data structure, the NFA-OBDD approach
in [26] did not consider the submatch construct, making it
inapplicable to the 90% of regular expressions in a typical
SIEM system. We extend the NFA-OBDD approach [26] in
two ways: (1) we propose an approach to annotate captur-
ing groups in regular expressions, and (2) present a new ap-
proach to perform submatch extraction. To demonstrate the
feasibility of our approach, we evaluated our approach using
patterns extracted from the Snort NIDS and a commercial
SIEM product. Our experiments show that our approach
achieves its ideal performance when patterns are combined.
In the best case, our approach is faster than RE2 and PCRE
by one to two orders of magnitude. In particular, we make
the following contributions:

• We propose a new approach to tag capturing groups in a
regular expression, and extend Thompson’s NFA construc-
tion approach to convert a regular expression with capturing
groups to a tagged-NFA.

• We present a novel and time-efficient technique (hence-
forth called Submatch-OBDD) to perform submatch extrac-
tion for regular expression-like pattern languages.

• We evaluated our approach’s time efficiency and space ef-
ficiency by matching the patterns from the Snort system and
a commercial SIEM system with network traces, synthetic
traces, and enterprise event logs, and then compared our
performance with two popular regular expression engines:
RE2 and PCRE.

The remainder of the paper is organized as follows. We
briefly describe ordered binary decision diagrams (OBDDs)
as background knowledge in Section 2. After that, we
present our design and implementation of Submatch-OBDD
in Section 3, followed by our evaluation in Section 4. We
discuss related work in Section 5 and conclude in Section 6.

Figure 1: The ordered binary decision diagram of a
Boolean function f(x1, x2, x3, x4, x5, x6) = (x̄1∧x2∧x3∧
x̄4 ∧ x5 ∧ x6)∨ (x̄1 ∧ x2 ∧ x3 ∧ x4 ∧ x̄5 ∧ x̄6)∨ (x1 ∧ x̄2 ∧ x3 ∧
x4 ∧x5 ∧ x̄6) with ordering x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 ≺ x6.

2. ORDERED BINARY DECISION DIA-
GRAMS

Bryant proposed ordered binary decision diagrams as
a data structure for symbolically representing arbitrary
Boolean functions [4]. OBDDs are widely used in digital
logic design and testing, artificial intelligence, and model
checking [5] to construct efficient algorithms for Boolean
functions.

An OBDD represents a Boolean function,
f(x1, x2, . . . , xn), as a rooted directed acyclic graph
(DAG), which has two types of nodes. A non-terminal
node, v, is associated with an argument ∈ {x1, x2, . . . , xn}
and has two children, low(v) and high(v). A terminal node
takes value ∈ {0, 1}. An OBDD is organized so that nodes
along all paths from the root to terminal nodes follow a
total order, ≺. An OBDD with root v denotes a function,
fv, which is recursively defined as:

• If v is a terminal node, then fv = value(v);

• If v is a non-terminal node and v is associated with
argument xi, then
fv(x1, x2, . . . , xn)= x̄i· flow(v)(x1, x2, . . . , xn) ∨
xi· fhigh(v)(x1, x2, . . . , xn).

To evaluate a function with a set of argument values
x1, x2, . . . , xn, start from the root, where if a node v is as-
sociated with xi, then traverse to low(v) if xi = 0 and to
high(v) if xi = 1, until a terminal node is reached. The func-
tion’s value equals the value of the terminal node at the end
of the traversal. Figure 1 shows an example Boolean func-
tion f(x1, x2, x3, x4, x5, x6) and its OBDD representation in
the order of x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5 ≺ x6.

OBDDs allow Boolean functions to be represented and
manipulated efficiently. Testing satisfiability with OBDDs
simply involves comparing a graph to that of a constant
function 0. Many operations of Boolean functions can be
represented as two types of graph operations in OBDDs:
apply and restrict. apply allows Boolean operators such

as ∨ and ∧ to be applied to a pair of OBDDs. It takes
a pair of OBDDs representing two functions f1 and f2, a
binary operator op, and produces a reduced graph repre-
senting function apply(op, f1, f2) = f1opf2. The resulting
OBDD has the same variable ordering as the input OBDDs.
restrict is a unary operator. It transforms a function f
into one representing the function f |xi=b for a specified ar-
gument value xi = b. The resulting OBDD does not have
any node associated with xi. The complexity of apply and
restrict is polynomial in the size of input OBDDs.

One important operation used in our Submatch-
OBDD design is existential quantification. In partic-
ular, ∃xi· f(x1, x2, . . . , xn) = f(x1, x2, . . . , xn)|xi=0 ∨
f(x1, x2, . . . , xn)|xi=1. Expressed by OBDD, we have
OBDD(∃xi· f(x1, x2, . . . , xn))
= apply(∨,restrict(OBDD(f), 1← xi),
restrict(OBDD(f), 0 ← xi)). As a result,
OBDD(∃xi· f(x1, x2, . . . , xn)) will have no node asso-
ciated with xi.

OBDDs are extremely useful in obtaining concise repre-
sentations of relations over finite domains. If R is a n-
arity relation over {0, 1}, then R can be represented by an
OBDD using its characteristic function fR(x1, x2, . . . , xn) =
1 iff R(x1, x2, . . . , xn). For example, a 3-ary relation R
= {(1, 0, 1), (1, 1, 0)} can be expressed by fR(x1, x2, x3) =
(x1 ∧ x̄2 ∧ x3) ∨ (x1 ∧ x2 ∧ x̄3), which is a Boolean function
and can therefore be represented using an OBDD.

A set of elements can also be expressed as an OBDD. If
S is a set over a domain D, then we can define a relation
RS(s) = 1 if s ∈ S. Operations on sets can be expressed
as Boolean operations and manipulated by OBDDs. For ex-
ample, IsEmpty(S ∩ T) is equivalent to checking the satis-
fiability of OBDD(apply(∧, S, T)). Our Submatch-OBDD
design in Section 3 converts relations and sets to OBDDs to
achieve time efficient operations.

3. DESIGN AND IMPLEMENTATION
We first give an overview of our approach before describing

the technical details.

3.1 Solution Overview
A key observation underlying our approach is that adding

a capturing group to a regular expression does not change
the language defined by the regular expression. It is known
that every language defined by a regular expression is also
defined by a finite automaton [11]. However, traditional au-
tomata do not support capturing groups. We present an ap-
proach to annotate capturing groups in regular expressions
and extend Thompson’s approach to convert a regular ex-
pression with capturing groups to a NFA-like machine where
transitions within capturing groups are tagged. We then
present a novel approach to do submatch extraction using
the tagged-NFAs. To improve the time efficiency of sub-
match extraction, we represent tagged-NFAs with symbolic
Boolean functions, and manipulate the Boolean functions
using ordered binary decision diagrams (OBDDs).

3.2 Tagging NFAs for Submatch
The syntax of regular expressions with capturing groups

on an alphabet Σ is

E ::= ǫ ∪ a ∪ EE ∪ E|E ∪ E ∗ ∪ (E) ∪ [E]

where a stands for an element of Σ, and ǫ denotes for zero
occurrence of a symbol. We use square brackets [,] to group

terms in a regular expression that are not capturing groups,
because the usual parentheses (,) are reserved for marking
capturing groups. If X and Y are sets of strings we use XY
to denote {xy : x ∈ X, y ∈ Y }, and X|Y to denote X ∪ Y .
We use E∗ to denote the closure of E under concatenation.

We use tags to distinguish the capturing groups within a
regular expression. Given a regular expression containing
c capturing groups, we assign tags t1, t2, ..., tc to each cap-
turing group in the order of their left parentheses as E is
read from left to right. We denote the set of tags by T =
{t1, t2, ..., tc}. We use tag(E) to refer to the resulting tagged
regular expression. For example, if E = ((a∗)|b)(ab|b) then
tag(E) = ((a∗)t2 |b)t1(ab|b)t3 .

The language L(F) for a tagged regular expression F =
tag(E) is a set of tagged strings, defined by L(ǫ) = {ǫ},
L(a) = {a}, L(F1F2) = L(F1) · L(F2), L(F1|F2) = L(F1) ∪
L(F2), L(F∗) = L(F)∗, L([F]) = L(F), and L((F)t) = {αt :
α ∈ L(F)}, where ()t denotes a capturing group with tag
t and αt denotes the string α tagged with t. A string α
is tagged by t, if and only if each character in α is tagged
by t. Substrings of α may be tagged by other tags. Since
capturing groups can be nested, a character can be tagged
by multiple tags. An example of tagged string for a tagged
regular expression is: abt1bt1bt1 ∈ L(a(b∗)t1).

Definition A valid assignment of submatches for a string
α that matches regular expression E is a map sub :
{t1, t2, . . . tc} → Σ∗ such that there exists β ∈ L(tag(E))
satisfying the following:

(i) β|Σ = α, where β|Σ represents the projection of char-
acters in β onto their corresponding values of Σ;

(ii) if ti occurs in β then sub(ti) is the last consecutive
sequence of characters that are assigned with tag ti;

(iii) if ti does not occur in β, then sub(ti) = null;

For example, consider the regular expression [(a|c)(b|d)]∗
with input string abcd. A valid submatch assignment satis-
fying the above conditions is sub(t1) = c, sub(t2) = d.

It is well known that a regular expression can be converted
to an ǫ-NFA which defines the same language using Thomp-
son’s approach [11]. An ǫ-NFA can be reduced to an ǫ-free
NFA through an ǫ-closure mechanism [11]. In this paper,
we extend Thompson’s algorithm in a way such that it can
convert a regular expression containing capturing groups to
a tagged ǫ-NFA defining the same language. A tagged ǫ-
NFA can be described by a 7-tuple A = (Q,Σ, T, δ, γ, S, F),
where Q is a finite set of states, Σ is a finite set of input sym-
bols, T is a finite set of tags that each represents a capturing
group, S is a set of start states, F is a set of accept states,
δ is the transition function, and γ is a tag output function
γ : Q × Σ× Q → 2T , which associates each transition with
a tag set (which can be empty).

A tagged NFA can be constructed as follows, starting from
the three base cases shown in Figure 2. Figure 2(a) is the
NFA of expression ǫ, Figure 2(b) handles the empty regu-
lar expression, and Figure 2(c) gives the NFA of a single
symbol a with a set of tags τ ∈ 2T corresponding to captur-
ing groups associated with the illustrated transition. More
complex tagged NFAs can be constructed using the union,
concatenation, and closure constructs, by combining smaller
tagged NFAs as shown in Figure 3. A tagged NFA con-
structed using the above approach contains ǫ transitions.
Such a tagged NFA can be converted to an ǫ-free NFA in

Figure 2: Constructing tagged NFAs for (a) NFA of
ǫ; (b) NFA of an empty regular expression; (c) NFA
of a symbol a wrapped by capturing groups denoted
by τ .

Figure 3: The (a) union R|S, (b) concatenation RS,
and (c) closure constructs R∗ of tagged NFA con-
struction from a regular expression.

Figure 4: The tagged ǫ-NFA of (a∗)aa, where the
transition associated with the leftmost character a is
tagged by t1 because a∗ is within a capturing group.

a manner akin to the standard ǫ-closure algorithm for stan-
dard NFAs. We denote the corresponding ǫ-free tagged NFA
as A1 = (Q1,Σ, T, δ1, γ1, S1, F1), where the components of
A1 are defined in a manner akin to A (the tagged ǫ-NFA).

Example Consider an example regular expression (a∗)aa.
Figure 4 shows an the tagged ǫ-NFA, where the capturing
group is tagged by t1. Figure 5 shows the corresponding
ǫ-free tagged-NFA.

3.3 Operations on Tagged NFAs
The transition function δ1 and tag output function γ1 of

a tagged ǫ-free NFA can be represented by a four-column
table denoted by ∆(x, i, y, τ), which is a set of quadruples
(x, i, y, τ) such that there is a transition labeled by input
symbol i from state x to state y with a set of output tags
τ . Table 1 shows the tagged transition table of the example
NFA in Figure 5, where each tagged transition is represented

Figure 5: The tagged ǫ-free NFA of (a∗)aa after ǫ-
elimination, where state numbers 1, 2, and 3 are
obtained by renaming and merging states 2, 5, 7,
and 8 in the ǫ-NFA during ǫ-closure calculation.

x i y τ

1 a 1 {t1}
1 a 2 φ
2 a 3 φ

Table 1: Transition table of the tagged NFA in Fig-
ure 5.

by a row in the table. ∆(x, i, y, τ) allows us to perform two
key operations on tagged NFAs — match test and submatch
extraction, where the match test checks whether an input
string is accepted by a tagged NFA; if so, the submatch ex-
traction procedure returns a valid assignment of submatches
of the input string.

3.3.1 Match Test
Testing whether an input string matches a regular expres-

sion with capturing groups can be done by operating its
tagged NFA. The process is similar to operating a traditional
NFA, except that we need to do bookkeeping to be used for
submatch extraction. The match test of a tagged NFA for a
given input string a1a2 . . . al ∈ Σ∗ is performed by consum-
ing one input symbol at a time, and modifying the frontier
of active states appropriately using the transition function
δ1. As we modify the frontier, we also record the transitions
that the tagged-NFA makes by recording quadruples that
store the states traversed by each transition, as well as the
tags corresponding to those transitions. We denote these
sets of transitions using ∆1, ∆2, and ∆l, where each ∆i

is a set of quadruples of the form (x, i, y, τ) corresponding
to a source state, an input symbol, a target state, and the
corresponding tag.

After the last input symbol al is consumed, we check
whether any state in the frontier set belongs to accept states
F1. If so, the input string a1a2 . . . al is accepted by the
tagged NFA A1, i.e., the input string matches the regular
expression defined by A1.

Example Consider the example regular expression (a∗)aa
in Figure 5, where its tagged transitions ∆(x, i, y, τ) are
shown in Table 1. For convenience, we denote the three
quadruples in Table 1 by row1, row2, and row3. Let’s use
aaaa as an input string. For the ith input symbol, we
use Xi to denote the current frontier set and Yi to de-
note the next frontier set after the symbol is consumed.
Start from the first input symbol a and start states S1 =
{1}, we have ∆1 = {row1, row2}, Y1 = {1, 2}. Rename
Y1 to X2 and follow the process described in the fron-
tier derivation, we can obtain ∆2 = {row1, row2, row3},
X3 = {1, 2, 3}, ∆3 = {row1, row2, row3}, X4 = {1, 2, 3},
and ∆4 = {row1, row2, row3}, X5 = {1, 2, 3}. Figure 6 vi-
sualizes how the frontier set evolves after consuming each
input symbol during the match test. An arrow between two

Figure 6: Example of frontier derivation for the
tagged NFA in Figure 5 with input string aaaa. The
dark circles of each column stands for the frontier
states after consuming an input symbol. A light
gray circle means that a state is not in a frontier
state set. An arrow between two circles represent a
transition. An arrow is labeled by a submatch tag if
the denoted transition is within a capturing group.

nodes denotes a transition. If an arrow is tagged, it means
that a transition is associated with one or more submatch
tags, e.g., the {t1} above the arrow between states 1 and 1
indicate this transition is within a capturing group.

3.3.2 Submatch Extraction
If an input string is accepted by a regular expression which

has capturing groups, the submatches of the input string
need to be extracted. Recall that the NFA match test pro-
cess described above actually considers all possible branches
(transitions) when consuming each input symbol. If the in-
put string is accepted by the tagged NFA, then there exists
at least one path from a start state to an accept state, where
edges of the path denote transitions between states and are
sequentially associated with the individual symbols of the
input string. An edge may be associated with one or more
submatch tags, or no tag at all. For example, the bold ar-
rows in Figure 6 shows a path from start state 1 to the
accept state 3. Such a path allows us to perform submatch
extraction.

In fact, any path from a start state to an accept state dur-
ing a match test on a tagged NFA generates a valid assign-
ment of submatches. A review of the match test process
can help us to understand why: Since a path from a start
state to an accept state is a number of sequential and valid
operations of a tagged NFA on an input string, the assign-
ment of submatch tags on each input symbol is also valid.
The collections of the last consecutive sequences of symbols
associated with the same tags that satisfy the conditions of
the definition in Section 3.2 generate a valid assignment of
submatches.

Path Finding Assume an input string a1a2 . . . al is ac-
cepted by a tagged NFA A1, and qf is an accept state af-
ter consuming the last symbol al. We present a backward
traversal approach to find a path which allows for submatch
extraction. Starting from one of the accept states qf , with
the last input symbol al, perform a lookup on ∆l for quadru-
ples (x, i, y, τ) such that y = qf and i = al. Pick any quadru-
ple (ql, al, qf , τ) which satisfies this condition, then ql is a
previous state which leads the automaton to qf with the
last input symbol al, and τ is the corresponding submatch
tags associated with al. We note that τ can be empty. Us-
ing ql, with input symbol al−1, perform a lookup on ∆l−1

for quadruples (x, i, y, τ) such that y = ql and i = al−1.
Such quadruples will allow us to find a previous state of
ql with input symbol al−1, along with submatch tags as-
sociated with al−1 if there are any. Continue this process
for al−2, . . . , and a1. Finally, we will reach a start state q1.
Then q1, q2, . . . , ql, qf is a valid traversal path for input string
a1a2 . . . al. During the backward path finding, each sym-
bol in a1a2 . . . al is assigned with zero or a set of submatch
tags. Submatches of an accepted input string can be ex-
tracted by scanning the input strings and collecting the last
consecutive sequence of symbols associated with the same
submatch tags. Given a regular expression and a matching
string, there might exist multiple paths from a start state
to an accept state. Thus, there might exist multiple ways to
assign valid submatches.

Example Figure 6 shows a traversal path of input string
aaaa on the tagged NFA shown in Figure 5. The path is
marked by bold arrows. Along this path, we can see that the
first two symbols of aaaa are associated with tag t1, and the
last two symbols have no submatch tag. Thus, the submatch
of aaaa for regular expression (a∗)aa is the substring of the
first two symbols, i.e., aa.

The match test and submatch extraction algorithms de-
scribed in Section 3.3.1 and 3.3.2 are space efficient since
the construction is based on NFA. However, they are not
time efficient. During the match test, the number of states
in a frontier is O(|Q1|) (the size of NFA). To derive the next
frontier, states in the current frontier need to be processed
one by one. Thus, the number of lookups at the transition
table during the match test for an input string of length
l is O(|Q1| × l). Similarly, the number of table lookups
performed during submatch extraction can be estimated as
O(|Q1| × l). If we can find an approach which allows us to
derive frontiers (in match test) and previous states (in sub-
match extraction) more efficiently, then the time efficiency
of the algorithms can be improved. Fortunately, we already
have the data structures to do that. Our approach is to rep-
resent tagged NFAs, perform match testing and submatch
extraction using Boolean functions (Section 3.4), and ma-
nipulate the Boolean functions using ordered binary decision
diagrams (OBDDs) (Section 3.5).

3.4 Boolean Function Representation
For convenience, we discuss tagged NFAs in which ǫ tran-

sitions have been eliminated. The Boolean function of a
tagged NFA A1 = (Q1,Σ, T, δ1, γ1, S1, F1) uses four vectors
of Boolean variables, x,y, i, and t. Vectors x and y are used
to denote states in Q1, and they contain ⌈lg |Q1|⌉ Boolean
variables each. Vector i is used to denote symbols in Σ and
it contains ⌈lg |Σ|⌉ Boolean variables. Vector t is used to de-
note submatch tags and it contains ⌈|T |⌉ Boolean variables.
We construct the following Boolean functions for the tagged
NFA A1.

• ∆(x, i,y, t) denotes the tagged transition table of A1. It
is a disjunction of all tagged transition relations (x, i, y, t).
As an example, the Boolean encoding of transition relations
in Table 1 is shown in Table 2, where states are encoded by
two bits, input symbol is encoded by one bit (since there is
only one symbol a), and submatch tags are encoded by one
bit. Specifically, states 1, 2, and 3 are encoded as 01, 10, and
11; symbol a is encoded as 1; and submatch tag t1 is encoded
as 1. The fifth column of Table 2 lists the function values
for each set of Boolean encodings. The function value of

x i y t ∆(x,i,y,t)
0 1 1 0 1 1 1
0 1 1 1 0 0 1
1 0 1 1 1 0 1

Table 2: Boolean encoding of transitions in Table 1.

Boolean encodings for tagged transitions is 1. The Boolean
encoding in Table 2 can be symbolically translated to

∆(x, i,y, t) = (x̄1 ∧ x2 ∧ i ∧ ȳ1 ∧ y2 ∧ t1)

∨ (x̄1 ∧ x2 ∧ i ∧ y1 ∧ ȳ2 ∧ t̄1)

∨ (x1 ∧ x̄2 ∧ i ∧ y1 ∧ y2 ∧ t̄1)

∆(x, i,y, t) is equivalent to the function f in Figure 1 if
we rename variables i, y1, y2, and t1 to x3, x4, x5, and x6

respectively.

• Iσ(i) stands for the Boolean representation of symbols in
Σ. As an example, symbol a in Table 1 can be symbolically
represented by Ia(i) = i.

• F(x) is a Boolean function representing frontier states.
In the tagged NFA shown in Figure 5, consider state {1}
with input symbol a, the new frontier has two states {1, 2},
which can be symbolically represented by F(x) = (x̄1∧x2)∨
(x1 ∧ x̄2).

• ∆F (x,i,y,t) is used to represent the intermediate transi-
tions for frontier F(x) during a match test process.

• A(x) is used to define the Boolean representation of ac-
cept states of a tagged NFA. For the tagged NFA shown in
Figure 5, the accept states is {3}, thus, A(x) = x1 ∧ x2.

The Boolean functions described above can be automati-
cally computed for any tagged NFA.We next describe how to
perform the match test and submatch extraction described
in Section 3.3 using these Boolean functions.

3.4.1 Match Test
The match test process is similar to that described in [26],

except that we do book-keeping here to be used for submatch
extraction. Suppose the frontier of a tagged NFA is F(x)
at some instant of frontier derivation, and the next input
symbol is σ, then the next frontier states can be computed
using the following Boolean operations:

G(y) = ∃ x· ∃ i· ∃ t· [∆F (x, i,y, t)] (1)

where

∆F (x, i, y, t) = F(x) ∧ Iσ(i) ∧∆(x, i,y, t) (2)

We now explain why Equation (1) produces the new
frontier states. Recall that ∆(x, i, y, t) is the disjunction
of the tagged transitions of a NFA. The conjunctions of
∆(x, i,y, t) with F(x) and Iσ(i) on the right side of Equa-
tion (2) actually selects rows in the truth table of ∆(x, i, y, t)
that correspond to outgoing transitions from the states in
the current frontier F(x) labeled with symbol σ. These
transitions are denoted by ∆F (x, i,y, t), which is a func-
tion of x, i,y, and t. The new frontier states are the target
states of the selected transitions and are only associated with
y. To extract the new frontier states, we existentially quan-
tify x, i, and t using the existential quantification operator
introduced in Section 2. We rename y to x to express the
new frontier states in terms of x.

Consider the tagged NFA in Figure 5. Suppose the current
frontier is {1} and the next input symbol is a. Then

F(x) ∧ Ia(i) ∧∆(x, i,y, t) = (x̄1 ∧ x2 ∧ i ∧ ȳ1 ∧ y2 ∧ t1)

∨ (x̄1 ∧ x2 ∧ i ∧ y1 ∧ ȳ2 ∧ t̄1)

Apply existential quantification of x, i, and t on the above
conjunctions we obtain (ȳ1 ∧ y2) ∨ (∧y1 ∧ ȳ2), which is the
symbolic Boolean representation of the new frontier states
{1, 2}.

To check whether the automaton is in an accept state,
simply check the satisfiability of the conjunction between
F(x) and A(x). Rename the above example frontier (ȳ1 ∧
y2)∨(∧y1∧ ȳ2) to (x̄1∧x2)∨(∧x1∧ x̄2) and do a conjunction
with A(x) = x1 ∧ x2. The result is not satisfiable, thus, the
automaton is not in an accept state.

3.4.2 Submatch Extraction.
Now we discuss how to extract submatches using Boolean

function operations. The process starts from the last sym-
bol and one of the states where the input string is accepted.
For convenience, we call the current state of a backward path
finding a reverse frontier, which contains only one state be-
cause we are only interested in finding one path. Suppose
at an instant of the path finding the reverse frontier repre-
sentation is Fr(y), and the previous input symbol is σ. A
previous state which leads the automaton to Fr(y) can be
derived from the following Boolean function:

∆r(x, i,y, t) = Fr(y) ∧ Iσ(i) ∧∆F (x, i,y, t) (3)

where ∆F (x, i,y, t) denotes the intermediate tagged tran-
sitions corresponding to symbol σ during the match test
process. The conjunctions on the right side of Equation (3)
selects tagged transitions (labeled by σ) from ∆F (x, i,y, t)
where the target state is Fr(y). The previous states are
associated with x in ∆r(x, i,y, t). Since we are only inter-
ested in one path, we simply pick one row in the truth table
of ∆r(x, i, y, t) to find one previous state of Fr(y). If we de-
note the picked row as PickOne(∆r(x, i,y, t)), a previous
state G(x) of Fr(y) can be derived by

G(x) = ∃ y· ∃ i· ∃ t·H(x, i,y, t) (4)

H(x, i,y, t) = PickOne(∆r(x, i, y, t)) (5)

To obtain submatch tags τ (t) associated with σ, we existen-
tially quantify x, i, and y on H(x, i,y, t).

τ (t) = ∃ x· ∃ i· ∃ y·H(x, i,y, t) (6)

Consider the example in Figure 6. After consuming the
fourth input symbol of aaaa, the automaton accepts and

∆F (x, i, y, t) = (x̄1 ∧ x2 ∧ i ∧ ȳ1 ∧ y2 ∧ t1)

∨ (x̄1 ∧ x2 ∧ i ∧ y1 ∧ ȳ2 ∧ t̄1)

∨ (x1 ∧ x̄2 ∧ i ∧ y1 ∧ y2 ∧ t̄1)

Starting from the accept state 3 (Fr(y) = y1 ∧ y2) and
the last symbol a (Ia(i) = i), do a conjunction according to
Equation (3) we get ∆r(x, i,y, t) = (x1∧ x̄2∧i∧y1∧y2∧ t̄1),
which has only one tagged transition. Perform existential
quantifications according to Equation (4) and (5) we obtain
the Boolean representation of a previous state as x1 ∧ x̄2,
which translates to state 2. Do an existential quantifications
according to Equation (6) we get τ (t) = t̄1, which means
that no tag is associated with the fourth symbol a. Applying
the same approach on the 3rd, 2nd, and 1st symbols we
obtain a path from state 1 to 3, where the 1st and 2nd

symbol a are assigned with submatch tag t1. Thus, the
submatch of aaaa to (a∗)aa is sub(t1) = aa.

A submatch assignment obtained by our approach is not
necessarily the left most, longest submatch, which is re-
quired by POSIX. However, POSIX doesn’t have a notion of
“greedy” and “reluctant” closures, which give some control
over the length of the submatch. Thus, POSIX is incom-
plete. Standard libraries like Java and PCRE have behaviors
that are not POSIX compliant.

3.5 Submatch-OBDD
To improve the efficiency of the match test and

submatch extraction, we represent and manipulate the
Boolean functions defined in Section 3.4 using OB-
DDs. We call our model Submatch-OBDD. A Submatch-
OBDD for a tagged NFA A1 = (Q1,Σ, T, δ1, γ1, S1, F1)
is a 5-tuple [OBDD(∆(x, i,y, t)), {OBDD(Iσ |∀σ ∈
Σ))}, {OBDD(Tt|∀t ∈ T)},OBDD(FS1

), OBDD(A)],
where ∆(x, i,y, t) is Boolean representation of tagged tran-
sitions, Iσ is the Boolean representation of a symbol σ ∈ Σ,
Tt is Boolean representation of a tag t ∈ T , FS1

is Boolean
representation of start states, and A is the Boolean repre-
sentation of accept states F1.

To understand why OBDDs can improve the time-
efficiency of tagged NFA operations, consider frontier deriva-
tion on a tagged NFA. To derive a new set of frontier states,
the tagged transition table must be retrieved for each state
in the current frontier F , leading to O(|F|) operations for
each input symbol. On the other hand, the time-complexity
of using OBDDs to derive the next frontier is determined
by the two conjunctions and one existential quantification
in Equation (1) and (2). When the frontier set F is large,
the cost of doing the two conjunctions and one existential
quantification is often smaller than doing |F| lookups on the
transition table. Using the same method, we can calculate
that the time complexity of submatch extraction is the same
as the match test process. For a tagged-NFA with n states,
the size of frontier set |F| is O(n). Thus, the cost to pro-
cess an input string of l bytes by our approach is between
O(l) and O(nl). In other words, the time complexity of
Submatch-OBDD is between a pure DFA and a pure NFA
approach.

The space efficiency of Submatch-OBDD is comparable
to tagged NFAs. The space cost of a Submatch-OBDD is
dominated by OBDD(∆(x, i,y, t)), which needs a total of
2 × ⌈lg |Q1|⌉ + ⌈lg |Σ|⌉ + ⌈|T |⌉ Boolean variables. In the

worst case, the size of the OBDD is O(|Q1|
2 × |Σ| × 2|T |),

which is comparable to the size of transitions of a tagged
NFA. We note that the OBDDs of intermediate transitions
∆F (x, i,y, t) for all input symbols also take some space,
mainly depending on the size of input string. We will show
that such a cost is not a concern in practice in Section 4.

3.6 Implementation
We implemented Submatch-OBDD as a toolchain in C++.

The toolchain has two offline components, Re2Tnfa and
Tnfa2Obdd, and one online component, PatternMatch.
Re2Tnfa accepts patterns as input and outputs tagged-
NFAs that defines the same languages as the input patterns.
Tnfa2Obdd then generates the tagged-NFAs’ OBDD repre-
sentations. PatternMatch then performs match test and
submatch extraction on an input stream using the OBDD
representations. Our implementation interfaces with the
popular CUDD library [22] for OBDD construction and ma-
nipulation.

In comparison, both PCRE and RE2 are implemented
in C++. PCRE uses a recursive backtracking approach: It
compiles a pattern into a tree like structure and then uses
recursive backtracking to match patterns and extract sub-
matches. RE2 uses a combination of DFAs and NFAs for
submatch extraction: Given a pattern and an input string,
RE2 constructs and uses backward and forward DFAs to lo-
cate the pattern’s overall match in the input string. It then
uses NFA based approaches to find submatches in the overall
match. For memory efficiency, RE2 doesn’t construct entire
DFAs. It creates DFA states on demand (determination on-
the-fly) and stores them in a limited sized cache; when the
cache gets full, RE2 empties the cache and restarts the DFA
construction process.

4. EVALUATION
We evaluated the performance of our Submatch-OBDD

implementation using patterns used in real systems. We
measured Submatch-OBDD’s time efficiency and space effi-
ciency by matching the patterns with network traces, syn-
thetic traces, and enterprise event logs, and then compared
our performance with two popular regular expression en-
gines: RE2 and PCRE. Our findings suggest that Submatch-
OBDD achieves its ideal performance when patterns are
combined. In the best case, Submatch-OBDD is faster than
RE2 and PCRE by one to two orders of magnitude. All
the performance numbers of Submatch-OBDD reported in
this section were obtained based on the variable ordering of
i ≺ x ≺ y ≺ t.

4.1 Data Sets
We used three sets of patterns and trace files in our eval-

uation.

Snort-2009.
We extracted 115 patterns from a Snort 2009 HTTP rule

set of 3078 patterns. All patterns were extracted from the
pcre fields of the rules. Since our focus is submatch extrac-
tion, we excluded patterns containing no capturing groups
and patterns containing back references as patterns with
back references cannot be represented by regular languages.
Each extracted pattern contains one to six capturing groups.

We used two network traces and one synthetic trace to
evaluate the performance of our approach on the Snort-2009
pattern set.

• The first web trace was a 1.2GB network traffic
collected using tcpdump from our department’s web
server. The average packet size of this trace is 126
bytes with a standard deviation of 271. The sec-
ond web trace was a 1.3GB network traffic collected
by crawling URLs that appeared on Twitter using a
python script and recording the full length packets us-
ing tcpdump. The average packet size of the second
trace is 1202 bytes with a standard deviation of 472.

• We also created a synthetic trace to observe how differ-
ent implementations perform under the backtracking
algorithmic complexity attack [19]. By reviewing the
115 patterns of the Snort-2009 pattern set, we found
that several of them are vulnerable to the backtracking
algorithmic complexity attack if a regular expression
engine is implemented by backtracking, e.g., PCRE.
We then crafted a 1MB trace which can exploit the
backtracking behavior of a backtracking-based pattern

matching engine. The average line length of the trace
is 311 bytes with a standard deviation of 5.

Snort-2012.
We also evaluated our approach with the latest rules from

the Snort system. We extracted 403 patterns (regular ex-
pressions with capturing groups) from a snapshot of the
Snort-2012 HTTP rule set containing 3990 rules. All pat-
terns were extracted from the pcre fields of the rules. Like
the patterns of Snort-2009, we excluded patterns containing
back references as they can not be represented by regular
languages. Patterns containing no capturing group are also
excluded as our focus was on submatch extraction. Each
extracted pattern has one to ten capturing groups.

We used two web traces and one synthetic trace to evalu-
ate the performance of different approaches on this pattern
set. The two web traces are the same as those used in the
Snort-2009 pattern set evaluation. The synthetic trace was
created after reviewing the 403 patterns: We found that
several of the 403 patterns are vulnerable to backtracking
algorithmic attacks. We then crafted a 1MB trace which
can exploit the backtracking behavior of a backtracking-
based pattern matching engine and evaluated its effects on
Submatch-OBDD, RE2, and PCRE. The average line length
of this synthetic trace is 689 bytes with a standard deviation
of 41.

Firewall-504.
We also obtained a set of 504 patterns used by a commer-

cial SIEM system C to normalize logs generated by a com-
mercial firewall, F . For commercial reasons, we do not dis-
close the names of the SIEM system and the firewall. Each
pattern in the set has 1-22 capturing groups. We collected
87 MBs of firewalls logs generated by F in an enterprise set-
ting and measured our performance on the logs. The logs
consist of 1.01 million lines of text and the average line size
is 87 bytes with standard deviation of 51. We did not create
synthetic trace for this pattern set as firewall logs cannot
easily be controlled by an attacker.

4.2 Experimental Setup
We conducted our experiments on an Intel Core2 Duo

E7500 Linux-2.6.3 machine running at 2.93 GHz with 2 GB
of RAM. We measure the time efficiency of different ap-
proaches in the average number of CPU cycles needed to
process one byte of a trace file. We only measure pattern
matching and submatch extraction time, and exclude pat-
tern compilation time. Similarly, we measure memory ef-
ficiency in megabytes (MB) of RAM used during pattern
matching and submatch extraction.

We measure the performance of each approach on a pat-
tern set in two configurations. In one configuration, Conf.S,
we match each pattern with the input stream sequentially.
For example, we match each pattern in the Snort-2009 set
with each packet in the network traces. Combining all pat-
terns of a pattern set into one single pattern, however, allows
us to match each packet with all patterns in one pass. This
configuration, Conf.C, is also useful in the log normalization
process of a SIEM system. The system can match an event
log with all rules in one pass and extract all fields of interest
instead of matching the logs with each rule sequentially.

Given a pattern set with n patterns and an input trace of
M bytes, we measured performance of an approach in the
following two configurations.

• Conf.S (Sequential): We compile each pattern in-
dividually and then match the compiled patterns with
the trace sequentially. If the ith pattern’s execution
time for the M bytes trace is ti cycles, then the time
efficiency of an approach to the pattern set is t1+···+tn

M

cycles/byte.

• Conf.C (Combination): We combine the n patterns
together into one pattern using the Union operation.
We compile the combined pattern and match it with
the input trace. If the combined pattern’s execution
time for the M bytes trace is t cycles, then an ap-
proach’s time efficiency to the pattern set is t

M
cy-

cles/byte. When an input string matches a specific
pattern in the combined pattern, Submatch-OBDD
emits the submatches, as well as the pattern that
matches the input string.

4.3 Performance Results

4.3.1 Snort-2009
Table 3 shows the execution times (cycles/byte) and mem-

ory consumption of RE2, PCRE, and Submatch-OBDD for
the Snort-2009 pattern set on the web traces and synthetic
trace. We have the following observations:

• Submatch-OBDD achieves its ideal performance in
Conf.C, i.e., when patterns are combined together for
pattern matching and submatch extraction.

• Submatch-OBDD is the fastest approach among the
three. For the web traces, Submatch-OBDD’s best
performance (in Conf.C) is an order of magnitude
faster than the other approaches’ best performance (in
Conf.S).

• PCRE suffers from backtracking algorithmic complex-
ity attacks, while Submatch-OBDD and RE2 don’t.
With the web traces, the best time efficiency of PCRE
was 3.67 × 104. However, PCRE was slowed down by
two orders of magnitude when the synthetic trace was
used, as is shown in Table 3(b). The reason is that
the synthetic trace caused PCRE to perform heavily
backtracking for some patterns.

• In Conf.C, the memory consumption of Submatch-
OBDD and RE2 are comparative, while PCRE con-
sumes the least memory. We do not report the mem-
ory requirements in Conf.S as the three approaches use
very little memory for simple patterns.

We note that in Conf.S, RE2 is faster than Submatch-
OBDD. This is because many patterns did not fill up the
DFA state cache and hence did not trigger the DFA recon-
struction process. In the case of simple patterns, the cost
of OBDD operations, e.g., frontier derivation and existential
quantification, is higher than the cost of several lookups on
NFA transition table because the frontier size is often very
small. Thus, Submatch-OBDD performs slower than RE2
in such situations. The cost of OBDD operations will be
paid off when the frontier size of a tagged-NFA is large.

We recommend that Submatch-OBDD to be used in cases
where a group of patterns are combined together. The per-
formance boost of Submatch-OBDD is due to the redun-
dancy elimination: The OBDD representation eliminates
the redundancy in the Boolean representation of tagged
NFAs.

Method Conf.S Conf.C
Exec-time Exec-time Memory (MB)

RE2 2.31× 104 1.21 × 105 7.3
PCRE 3.67× 104 1.13 × 106 1.2
OBDD 8.76× 104 3.63 × 103 9.4

(a) Performance numbers with the web traces

Method Conf.S Conf.C
Exec-time Exec-time Memory (MB)

RE2 8.20× 104 2.22 × 105 7.6
PCRE 1.44× 106 1.40 × 106 1.0
OBDD 2.12× 105 2.20 × 104 7.0
(b) Performance numbers with the synthetic trace

Table 3: Execution time (cycles/bytes) and mem-
ory consumption for the Snort-2009 data set with
(a) the web traces and (b) the synthetic trace. In
both traces, Submatch-OBDD’s best execution time
(Conf.C) is much shorter than RE2’s and PCRE’s
best execution times (Conf.S).

4.3.2 Snort-2012
Table 4 shows the performance of RE2, PCRE, and

Submatch-OBDD on the 403 patterns from Snort-2012 rule
set.We have the following observations:

• Submatch-OBDD achieves its ideal time efficiency in
Conf.C, i.e., when patterns are combined together for
matching test and submatch extraction.

• For the web traces, Submatch-OBDD is faster than
RE2, but slower than PCRE. While for the synthetic
trace, Submatch-OBDD is faster than both RE2 and
PCRE.

• Like in the Snort-2009 data set, PCRE suffers from
the backtracking algorithmic attack performed by the
synthetic trace. PCRE’s time efficiency under the syn-
thetic trace is two to three orders of magnitude than
under the web traces.

• In Conf.C, the memory consumption of Submatch-
OBDD and RE2 are comparative.

Although we observed that PCRE performed better for
the web traces in Table 4, PCRE is still not recommended to
be used as pattern matching engine for a network intrusion
detection system (NIDS). The main reason is that it is easy
for attackers to craft network traffic performing backtracking
algorithmic attacks on PCRE, as was shown by Smith et al.
in [19]. Our experimental results in Table 3 and Table 4
also demonstrated that PCRE is easily to be slowed down
by hundreds of times with carefully crafted synthetic traces.

4.3.3 Firewall-504
Table 5 shows the three approaches’ performance on the

Firewall-504 data set. Submatch-OBDD is the fastest ap-
proach on this data set. In Conf.C, Submatch-OBDD is
orders of magnitude faster than RE2 and PCRE. Also,
Submatch-OBDD’s best performance (in Conf.C) is 62%
faster than RE2’s best performance (in Conf.S). In mem-
ory usage, PCRE is most space compact. Submatch-OBDD
consumes slightly more memory than RE2.

4.4 Discussion
During our evaluation, we found a small number regular

expressions from the Snort 2009 and 2012 rule sets that can

Method Conf.S Conf.C
Exec-time Exec-time Memory (MB)

RE2 4.79 × 104 2.09 × 106 15.0
PCRE 7.70 × 104 2.69 × 103 1.0
OBDD 3.83 × 105 1.08 × 104 6.3

(a) Performance numbers with the web traces

Method Conf.S Conf.C
Exec-time Exec-time Memory (MB)

RE2 2.92 × 105 8.21 × 106 15.0
PCRE 1.47 × 106 7.64 × 105 1.0
OBDD 4.70 × 105 1.10 × 105 15.3
(b) Performance numbers with the synthetic trace

Table 4: Execution time (cycles/bytes) and memory
consumption for the Snort-2012 data set with (a) the
web traces and (b) the synthetic trace.

Method Conf.S Conf.C
Exec-time Exec-time Memory (MB)

RE2 2.04 × 105 2.20 × 107 21.0
PCRE 6.88 × 105 1.60 × 106 1.1
OBDD 6.31 × 105 1.25 × 105 30.0

Table 5: Execution time (cycles/bytes) and memory
consumption for the Firewall-504 data set.

cause either PCRE or RE2 to perform poorly. For example,
if we use PCRE to match

.*\x2F[^\s]*\.(dat|xml)\?[^\s]*v=[^\s]*t=[^\s]*c=

with input string
/;/;/;.dat?;.dat?;.dat?;v=;v=;v=;t=;t=;t=;c.
Then PCRE will perform O(3×3×3×3) backtracking evalu-
ations before eventually concluding that the string does not
match the pattern. The evaluation time of PCRE will in-
crease exponentially if we increase the number of repetitions
of the /;, .dat?, v=;, and t=; in the input string. We ob-
served that when these substrings were repeated 20 times,
the execution time of PCRE for this regular expression was
in the order of 106 cycles/byte. Details on how to create
pathological traces to exploit the backtracking behavior of
PCRE can be found in [19].

RE2 can perform poorly under the case when the DFA
states of a regular expression blow up. The blow-up will
cause the limited state cache be filled quickly and RE2 has
to empty the cache and restart the DFA construction. In
our experiments, we have observed an individual regular ex-
pression from Snort-2009 where the time efficiency of RE2 is
an order of magnitude slower than Submatch-OBDD, which
does not suffer from state blow up as it is a NFA-based
approach. We also found eight patterns from the SIEM sys-
tem which cause RE2 to blow up in its DFA construction.
For these patterns, the time efficiency of RE2 is an order of
magnitude slower than Submatch-OBDD. For commercial
reasons, we do not disclose these patterns in the paper.

Please note that RE2 and PCRE are mature and pop-
ular engines and their code bases are heavily optimized.
We have not devoted significant time to try to optimize
Submatch-OBDD. We believe that Submatch-OBDD’s per-
formance can be further improved with better optimization.

5. RELATED WORK
Regular expressions are extensively used to construct at-

tack signatures in NIDS and to process event logs in SIEM

systems. Finite automata are natural representations for
regular expressions. DFAs are fast, but suffer from state
blow-up for certain types of regular expressions. NFAs are
compact, but slow in operation. Many techniques have
been proposed to improve DFAs’ space efficiency: compres-
sion [2], determinization on-the-fly [23], building multiple
DFAs (MDFA) from a group of signatures [28], extending
DFAs with scratch memory (XFAs) [20, 21], and construct-
ing DFA variants with hardware implementations [3, 13, 15].
Similarly, many techniques have been proposed to improve
NFAs’ time efficiency: hardware based parallelism [7, 15, 6,
12, 18] and software based speedup [26, 27]. Hybrid finite
automata [1] combines the benefits of NFAs and DFAs.

Submatch extraction, however, has not received much at-
tention from the research community. Pike implemented a
submatch extraction approach in the sam text editor [17] us-
ing a straightforward modification of Thompson’s NFA sim-
ulation [24]. Google’s RE2 tool also uses the modified NFA
simulation approach. Laurikari proposed TNFA, an NFA-
based approach for submatch extraction, where an NFA is
augmented with tags to represent capturing groups [14]. Our
approach also uses tags, but we associate tags with non-ǫ
transitions whereas TNFA associates tags with ǫ transitions.
We use OBDDs to represent and operate on tagged NFAs
to achieve time efficiency. We did not include TNFA in our
experiments as we already compared with a mature NFA-
based approach, RE2.

Java, PCRE, Perl, Python, Ruby, and many other tools
implement pattern match and submatch extraction using re-
cursive backtracking, where an input string may be scanned
multiple times before a match is found. The backtracking
approach’s worst case performance is exponential running
time [9]. These tools use backtracking to efficiently han-
dle backreference, a non-regular construct that improves
the pattern language’s expressive power. In contrast, our
Submatch-OBDD approach is an NFA-based technique and
does not suffer from exponential running time.

Google’s RE2 is an open source automata based pattern
matching tool that supports submatch extraction [10]. RE2
employs a DFA approach to test whether an input string
matches a pattern. If a pattern contains capturing groups,
RE2 uses a DFA approach to find the pattern’s overall match
in an input string and then runs an NFA approach to extract
the submatches in the overall match. Similar to RE2, our
Submatch-OBDD is NFA-based. We, however, use OBDDs
to perform NFA operations and hence improve time effi-
ciency. Submatch-OBDD performs better than RE2 when
patterns are combined. Both RE2 and Submatch-OBDD do
not support backreferences.

Yang et al.’s NFA-OBDD model [26, 27] is the most rel-
evant work to Submatch-OBDD. A commonality between
NFA-OBDD and our Submatch-OBDD is the use of “im-
plicit state enumeration” by means of OBDDs [8, 25]. NFA-
OBDD, however, does not support submatch extraction.
In our work, we propose a new approach to tag captur-
ing groups in a regular expression, and extend Thompson’s
NFA construction to support capturing groups. We propose
a novel submatch extraction approach using OBDDs.

6. CONCLUSION
We present Submatch-OBDD, which allows fast submatch

extraction in regular expression-like pattern matching. We
propose a new approach to tag capturing groups in a regular
expression, and extend Thompson’s NFA construction ap-
proach to support regular expressions with capturing groups.

We present a novel technique to perform submatch extrac-
tion. Our use of OBDDs improves the time efficiency of
match test and submatch extraction. We evaluated our
Submatch-OBDD implementation using patterns used in the
Snort NIDS and a commercial SIEM system. Our experi-
ments on real network traces, synthetic traces, and enter-
prise event logs show that Submatch-OBDD achieves its
ideal performance when patterns are combined. In the best
case, our approach is faster than RE2 and PCRE by one to
two orders of mangintude.

Acknowledgments
This work was supported in part by NSF grants CNS-
0952128 and CNS-1117711. We thank the anonymous ANCS
reviewers for helpful comments on an earlier draft of this pa-
per.

7. REFERENCES
[1] M. Becchi and P. Crowley. A hybrid finite automaton

for practical deep packet inspection. In Proceedings of
the 2007 ACM CoNEXT conference, CoNEXT ’07,
pages 1:1–1:12, New York, NY, USA, 2007. ACM.

[2] M. Becchi and P. Crowley. An improved algorithm to
accelerate regular expression evaluation. In
Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for networking and communications
systems, ANCS ’07, pages 145–154, New York, NY,
USA, 2007. ACM.

[3] B. C. Brodie, D. E. Taylor, and R. K. Cytron. A
scalable architecture for high-throughput
regular-expression pattern matching. In Intl. Symp.
Computer Architecture, pages 191–202. IEEE
Computer Society, 2006.

[4] R. E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Comput.,
35:677–691, August 1986.

[5] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and J. Hwang. Symbolic model checking: 1020 states
and beyond. In Symp. on Logic in Computer Science,
pages 401–424. IEEE Computer Society, 1990.

[6] D. Chasaki and T. Wolf. Fast regular expression
matching in hardware using nfa-bdd combination. In
Proceedings of the 6th ACM/IEEE Symposium on
Architectures for Networking and Communications
Systems, ANCS ’10, pages 12:1–12:2, New York, NY,
USA, 2010. ACM.

[7] C. R. Clark and D. E. Schimmel. Scalable pattern
matching for high-speed networks. In Symp. on
Field-Programmable Custom Computing Machines,
pages 249–257. IEEE Computer Society, 2004.

[8] O. Coudert, C. Berthet, and J. C. Madre. Verification
of synchronous sequential machines based on symbolic
execution. In Proceedings of the international
workshop on Automatic verification methods for finite
state systems, pages 365–373, New York, NY, USA,
1990. Springer-Verlag New York, Inc.

[9] R. Cox. Regular expression matching can be simple
and fast.
http://swtch.com/~rsc/regexp/regexp1.html, 2007.

[10] R. Cox. Implementing regular expressions.
http://swtch.com/~rsc/regexp/, Last retrieved in
August 2011.

[11] J. E. Hopcroft, R. Motwani, and J. D. Ullman.
Introduction to automata theory, languages, and
computation. Addison Wesley, 2001.

[12] B. L. Hutchings, R. Franklin, and D. Carver. Assisting
network intrusion detection with reconfigurable
hardware. In Symp. on Field-Programmable Custom
Computing Machines, pages 111–120. IEEE Computer
Society, 2002.

[13] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and
J. Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection. In
ACM SIGCOMM Conference, pages 339–350. ACM,
2006.

[14] V. Laurikari. NFAs with tagged transitions, their
conversion to deterministic automata and application
to regular expressions. In SPIRE’00, September 2000.

[15] C. Meiners, J. Patel, E. Norige, E. Torng, and A. X.
Liu. Fast regular expression matching using small
TCAMs for network intrusion detection and
prevention systems. In 19th USENIX Security
Symposium, August 2010.

[16] PCRE. The Perl compatible regular expression library.
http://www.pcre.org.

[17] R. Pike. The text editor sam. Softw. Pract. Exper.,
17:813–845, November 1987.

[18] R. Sidhu and V. Prasanna. Fast regular expression
matching using FPGAs. In Symp. on
Field-Programmable Custom Computing Machines,
pages 227–238. IEEE Computer Society, 2001.

[19] R. Smith, C. Estan, and S. Jha. Backtracking
algorithmic complexity attacks against a NIDS. In
Annual Computer Security Applications Conf., pages
89–98. IEEE Computer Society, 2006.

[20] R. Smith, C. Estan, and S. Jha. XFA: Faster signature
matching with extended automata. In Symp. on
Security and Privacy, pages 187–201. IEEE Computer
Society, 2008.

[21] R. Smith, C. Estan, S. Jha, and S. Kong. Deflating
the Big Bang: Fast and scalable deep packet
inspection with extended finite automata. In
SIGCOMM Conference, pages 207–218. ACM, 2008.

[22] F. Somenzi. CUDD: CU decision diagram package,
release 2.4.2. Department of Electrical, Computer, and
Energy Engineering, University of Colorado at
Boulder.
http://vlsi.colorado.edu/\simfabio/CUDD.

[23] R. Sommer and V. Paxson. Enhancing byte-level
network intrusion detection signatures with context.
In CCS’03, pages 262–271. ACM, 2003.

[24] K. Thompson. Programming techniques: Regular
expression search algorithm. Commun. ACM,
11:419–422, June 1968.

[25] H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit state enumeration
of finite state machines using bdd’s. In IEEE
International Conference on Computer-Aided Design,
pages 130–133, Santa Clara, CA, 1990. IEEE.

[26] L. Yang, R. Karim, V. Ganapathy, and R. Smith.
Improving nfa-based signature matching using ordered
binary decision diagrams. In RAID’10, volume 6307 of
Lecture Notes in Computer Science (LNCS), pages
58–78, Ottawa, Canada, September 2010. Springer.

[27] L. Yang, R. Karim, V. Ganapathy, and R. Smith.

Fast, memory-efficient regular expression matching
with nfa-obdds. Computer Networks,
55(15):3376–3393, October 2011.

[28] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H.
Katz. Fast and memory-efficient regular expression
matching for deep packet inspection. In ACM/IEEE
Symp. on Arch. for Networking and Comm. Systems,
pages 93–102, 2006.

